在边长为1的小正方形组成的方格纸中,若多边形的各顶点都在方格纸的格点(横竖格子线的交错点)上,这样的多边形称为格点多边形.记格点多边形内的格点数为a,边界上的格点数为b,则格点多边形的面积可表示为,其中m,n为常数.
(1)在下面的方格中各画出一个面积为6的格点多边形,依次为三角形、平行四边形(非菱形)、菱形;
(2)利用(1)中的格点多边形确定m,n的值.
如图,正方形ABCD的边长为4+2,点E在对角线BD上,且∠BAE=,EF⊥AB,垂足为点F,则EF的长是
在平面直角坐标系O中,过原点O及点A(0,2) 、C(6,0)作矩形OABC,∠AOC的平分线交AB于点D 点P从点O出发,以每秒个单位长度的速度沿射线OD方向移动;同时点Q从点O出发,以每秒2个单位长度的速度沿x轴正方向移动 设移动时间为t秒,当t为 时,△PQB为直角三角形。
分别以□ABCD(∠CDA≠90°)的三边AB,CD,DA为斜边作等腰直角三角形,△ABE,△CDG,△ADF.
(1)如图1,当三个等腰直角三角形都在该平行四边形外部时,连接GF,EF.请判断GF与EF的数量关系及位置关系;(只写结论,不需证明)
(2)如图2,当三个等腰直角三角形都在该平行四边形内部时,连接GF,EF,(1)中结论还成立吗?若成立,给出证明;若不成立,说明理由.
如图,已知在正方形ABCD中,点O为对角线AC的中点,过O点的射线OM、ON分别交AB、BC于点E、F,且∠EOF=90°,BO、EF交于点P,则下面结论中:①图形中全等的三角形只有三对;②△EOF是等腰直角三角形;③正方形ABCD的面积等于四边形OEBF面积的4倍;④BE+BF=OA;⑤+
=2OP·OB.正确结论的个数是( )
A.4个 B.3个 C.2个 D.1个
如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF.给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正确的结论共有( )
A.4个 | B.3个 | C.2个 | D.1个 |
如图,在菱形ABCD中,对角线AC,BD相交于点O,AC=12,BD=16,E为AD中点,点P在x轴上移动.若△POE为等腰三角形,请写出所有符合要求的点P的坐标 .
我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”(如图(1)),图(2)由弦图变化得到,它是由八个全等的直角三角形拼接而成,记图中正方形ABCD、正方形EFGH、正方形MNKT的面积分别为、、.若正方形EFGH的边长为2,则= .
如图,在边长为10的菱形ABCD中,对角线BD ="16." 点E是AB的中点,P、Q是BD上的动点,且始终保持PQ ="2." 则四边形AEPQ周长的最小值为_________.(结果保留根号)
如图,已知△ABC,直线PQ垂直平分AC,与边AB交于E,连接CE,过点C作CF平行于BA交PQ于点F,连接AF.
(1)求证:△AED≌△CFD;
(2)求证:四边形AECF是菱形.
(3)若AD=3,AE=5,则菱形AECF的面积是多少?
(本题14分)已知,在△ABC中,∠BAC=90°,∠ABC=45°,点D为直线BC上一动点(点D不与点B,C重合).以AD为边做正方形ADEF,连接CF.
(1)如图1当点D在线段BC上时.求证:CF+CD=BC;
(2)如图2,当点D在线段BC的延长线上时,其他条件不变,请直接写出CF,BC,CD三条线段之间的关系;
(3)如图3,当点D在线段BC的反向延长线上时,且点A,F分别在直线BC的两侧,其他条件不变;
①请直接写出CF,BC,CD三条线段之间的关系;
②若正方形ADEF的边长为2,对角线AE,DF相交于点O,连接OC,求OC的长度.
如图,在平行四边形ABCD中,E、F为BC上两点,且BE=CF,AF=DE.
(1)找出图中一对全等的三角形,并证明;
(2)求证:四边形ABCD是矩形.
如图,用纸折出黄金分割点:裁一张正方的纸片ABCD,先折出BC的中点E,再折出线段AE,然后通过折叠使EB落到线段EA上,折出点B的新位置B′,因而EB′=EB.类似地,在AB上折出点B″使AB″=AB′.这时B″就是AB的黄金分割点.请你证明这个结论.
如图①,在□ABCD中,AB=13,BC=50,点P从点B出发,沿B—A—D—A运动.已知沿B—A运动时的速度为每秒13个单位长度,沿A—D—A运动时的速度为每秒8个单位长度.点Q从点 B出发沿BC方向运动,速度为每秒5个单位长度. 若P、Q两点同时出发,当点Q到达点C时,P、Q两点同时停止运动.设点P的运动时间为t(秒).连结PQ.
(1)当点P沿A—D—A运动时,求AP的长(用含t的代数式表示).
(2)过点Q作QR//AB,交AD于点R,连结BR,如图②.在点P沿B—A—D运动过程中,是否存在线段PQ扫过的图形(阴影部分)被线段BR分成面积相等的两部分的情况,若存在,求出所有t的值,若不存在,请说明理由.
(3)设点C.D关于直线PQ的对称点分别为、,在点P沿B—A—D运动过程中, 当//BC时,求t的值(直接写出结果).