河南省安阳市龙安区九年级下学期第五次月考数学试卷
某市5月上旬前五天的最高气温如下(单位:°C):28,29,31,29,33,对这组数据,下列说法错误的是( )
A.平均数是30 B.众数是29
C.中位数是 31 D.极差是5
下列图形中,既是轴对称图形又是中心对称图形的共有( )
A.1个 | B.2个 | C.3个 | D.4个 |
已知:如图,BD平分∠ABC,点E在BC上,EF∥AB.若∠CEF=100°,则∠ABD的度数为( )
A.60° B.50° C.40° D.30°
如图,已知线段OA交⊙O于点B,OB=AB,点P是⊙O上一个动点,则∠OAP的最大值是( )
A.30° | B.45° | C.60° | D.90° |
如图,在△ABC中,D是BC边的中点,DE⊥DF,DE交AB于点E,DF交AC于点F,连接EF.若BE=2,CF=3,则EF的值可能为( )
A.7 | B.6 | C.5 | D.4 |
如图,在Rt△ABC中,AB=CB,BO⊥AC,把△ABC折叠,使AB落在AC上,点B与AC上的点E重合,展开后,折痕AD交BO于点F,连结DE、EF.下列结论:①tan∠ADB=2;②图中有4对全等三角形;③BD=BF;④S四边形=;⑤若将△DEF沿EF折叠,则点D一定落在AC上,上述结论中正确的个数是( )
A.1个 | B.2个 | C.3个 | D.4个 |
如图,四边形ABCD中,AB∥CD,AB⊥BC,点E在AB边上从A向B以1cm/s的速度移动,同时点F在CD边上从C向D以2cm/s的速度移动,若AB=7cm,CD=9cm,则 秒时四边形ADFE是平行四边形。
如图,在菱形ABCD中,对角线AC,BD相交于点O,AC=12,BD=16,E为AD中点,点P在x轴上移动.若△POE为等腰三角形,请写出所有符合要求的点P的坐标 .
“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A,B,C,D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图
请根据以上信息回答:
(1)本次参加抽样调查的居民有________人;
(2)扇形统计图中:a=________,b=_________,并把条形统计图补充完整;
(3)若有外型完全相同的A,B,C,D粽各一个,煮熟后,小王吃了两个,用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.
如图,在□ABCD中,延长CD到E,使DE=CD,连接BE,交AD于点F,交AC于点G.
(1)求证:AF=DF;
(2)若BC=2AB,且DE=1,∠E=30°,求BE的长.
如图是一座人行天桥引桥部分的示意图,上桥通道AD∥BE,水平平台DE和地面AC平行,立柱BC和地面AC垂直,∠A=37°.已知天桥的高度BC为4.8米,引桥的水平跨度AC为8米,求水平平台DE的长度.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
如图,已知一次函数与反比例函数的图象交于两点A(-1,6),B(a,3).
(1)求两个函数的解析式;
(2)结合图形,直接写出时-﹥0时的取值范围;
(3)如图2,梯形OBCE中,BC∥OE,过点C作CE⊥x轴于点E,CE和反比例函数的图象交于点P,当梯形OBCE的面积为9时,请求出点P的坐标.
某中学计划从办公用品公司购买A,B两种型号的小黑板.经洽谈,购买一块A型小黑板比购买一块B型小黑板多用20元,且购买5块A型小黑板和4块B型小黑板共需820元.
(1)求购买一块A型小黑板、一块B型小黑板各需多少元.
(2)根据该中学实际情况,需从公司购买A,B两种型号的小黑板共60块,要求购买A,B两种型号小黑板的总费用不超过5240元.并且购买A型小黑板的数量不小于购买B型小黑板数量的.则该中学从公司购买A,B两种型号的小黑板有哪几种方案?哪种方案的总费用最低?
(1)如图1,平面内有一等腰直角三角板ABC(∠ACB=90°)和一直线MN.过点C作CE⊥MN于点E,过点B作BF⊥MN于点F,试证明线段AF,BF,CE之间的数量关系为AF+BF="2CE" 。
(提示:过点C做BF的垂线,利用三角形全等证明。)
(2)若三角板绕点A顺时针旋转至图2的位置,其他条件不变,试猜想线段AF、BF、CE之间的数量关系,并证明你的猜想。
(3)若三角板绕点A顺时针旋转至图3的位置,其他条件不变,则线段AF、BF、CE之间的数量关系为
图1 图2 图3