如图是一座人行天桥引桥部分的示意图,上桥通道AD∥BE,水平平台DE和地面AC平行,立柱BC和地面AC垂直,∠A=37°.已知天桥的高度BC为4.8米,引桥的水平跨度AC为8米,求水平平台DE的长度.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
已知,是方程的解,求代数式的值.
化简求值:,其中.
解方程: (1) (2)
如图1,已知直线与y轴交于点A,抛物线经过点A,其顶点为B,另一抛物线的顶点为D,两抛物线相交于点C (1)求点B的坐标,并说明点D在直线的理由; (2)设交点C的横坐标为m ①交点C的纵坐标可以表示为:或,由此请进一步探究m关于h的函数关系式; ②如图2,若,求m的值.
如图,在平面直角坐标系中,以点M(0,)为圆心,作⊙M交x轴于A、B两点,交y轴于C、D两点,连结AM并延长交⊙M于点P,连结PC交x轴于点E,连结DB,∠BDC=30°. (1)求弦AB的长; (2)求直线PC的函数解析式; (3)连结AC,求△ACP的面积.