如图是一座人行天桥引桥部分的示意图,上桥通道AD∥BE,水平平台DE和地面AC平行,立柱BC和地面AC垂直,∠A=37°.已知天桥的高度BC为4.8米,引桥的水平跨度AC为8米,求水平平台DE的长度.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
已知二次函数的图象以A(-1,4)为顶点,且过点B(2,-5) (1)求该函数的关系式; (2)求该函数图象与坐标轴的交点坐标; (3)将该函数图象向右平移,当图象经过原点时,A、B两点随图象移至A1、B2,求△OA1B2的面积。
已知,如图在直角梯形ABCD中,AD∥BC,∠A=900,BC=CD=10,, (1)求梯形ABCD的面积; (2)点E、F分别是BC、CD上的动点,点E从点B出发向点C运动,点F从点C出发向点D运动,若两点均以每秒1个单位的速度同时出发,连接EF,求△EFC面积的最大值,并说明此时E、F的位置。
小明、小亮和小强三人准备下象棋,他们约定用“抛硬币”的游戏方式来确定哪两个人先下棋,游戏规则如下: (1)请用树状图或列表法表示一个回合所有可能出现的结果。 (2)求一个合能确定两人先下棋的概率。
如图,在△ABC中,∠A=300,,BC=,求AB的长。
如图,抛物线与轴交于(,0)、(,0)两点,且,与轴交于点,其中是方程的两个根。 (1)求抛物线的解析式; (2)点是线段上的一个动点,过点作∥,交于点,连接,当的面积最大时,求点的坐标; (3)点在(1)中抛物线上,点为抛物线上一动点,在轴上是否存在点,使以为顶点的四边形是平行四边形,如果存在,求出所有满足条件的点的坐标,若不存在,请说明理由。