如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(,3),B(,1),C(,3).(1)请按下列要求画图:①将△ABC先向右平移4个单位长度、再向上平移2个单位长度,得到△A1B1C1,画出△A1B1C1;②△A2B2C2与△ABC关于原点O成中心对称,画出△A2B2C2.(2)在(1)中所得的△A1B1C1和△A2B2C2关于点M成中心对称,请直接写出对称中心M点的坐标.
如图,已知:在⊙O中,弦AB为8,圆心O到AB的距离为3. (1)求圆的半径; (2)若点P是AB上的一动点,试求OP最大值和最小值.
若关于的一元二次方程的一个根是,求k的值及另一个根.
解下列方程: (1)(x-1)2=4; (2)x2-3x=1; (3)3x(x-2)=2(x-2); (4)(x-1)2-4x2=0.
如图,已知△ABC中,∠B="90" º,AB=16cm,BC=12cm,P、Q是△ABC边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C→A方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t秒. (1)出发2秒后,求PQ的长; (2)当点Q在边BC上运动时,出发几秒钟后,△PQB能形成等腰三角形? (3)当点Q在边CA上运动时,求能使△BCQ成为等腰三角形的运动时间.
如图, △ABC中,AB=AC,∠A=36°,AC的垂直平分线交AB于E,D为垂足,连结EC. (1)求∠ECD的度数; (2)若CE=12,求BC长.