如图,抛物线与x轴交于A(-1,0)、B(4,0)两点,与y轴交于点C,与过点C且平行于x轴的直线交于另一点D.(1)求抛物线的解析式及点D的坐标.(2)在抛物线上是否存在点P,使△CDP的面积为,若存在,请求出点P的坐标;若不存在,请说明理由.(3)点E是x轴上一点,在抛物线上是否存在点P,使以A,E,D,P为顶点的四边形是平行四边形,若存在,请直接写出点P的坐标;若不存在,请说明理由.
如图,△ABC中,已知∠BAC=45°,AD⊥BC于D,BD=2,DC=3,求AD的长.小萍同学灵活运用轴对称知识,将图形进行翻折变换,巧妙地解答了此题.请按照小萍的思路,探究并解答下列问题:(1)分别以AB、AC为对称轴,画出△ABD、△ACD的轴对称图形,D点的对称点为E、F,延长EB、FC相交于G点,求证:四边形AEGF是正方形;(2)设AD=x,建立关于x的方程模型,求出x的值.
某超市在销售中发现:某种新年吉祥物品平均每天可售出20套,每套盈利40元。为了迎接新年,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽快减少库存。经市场调查发现:如果每套降价1元,那么平均每天就可多售出2套。要想平均每天在销售这种吉祥物上盈利1200元,那么每套应降价多少?
小明和小亮是一对双胞胎,他们的爸爸买了两套不同品牌的运动服送给他们,小明和小亮都想先挑选.于是小明设计了如下游戏来决定谁先挑选.游戏规则是:在一个不透明的袋子里装有除数字以外其它均相同的4个小球,上面分别标有数字1、2、3、4.一人先从袋中随机摸出一个小球,另一人再从袋中剩下的3个小球中随机摸出一个小球.若摸出的两个小球上的数字和为奇数,则小明先挑选;否则小亮先挑选.(1)用树状图或列表法求出小明先挑选的概率;(2)你认为这个游戏公平吗?请说明理由.
如图,⊙O是△ACD的外接圆,AB是直径,过点D作直线DE∥AB,过点B作直线BE∥AD,两直线交于点E,∠ACD=45°,⊙O的半径是4cm.(1)请判断DE与⊙O的位置关系,并说明理由;(2)求图中阴影部分的面积(结果用π表示).
如图,将正方形ABCD中的△ABD绕对称中心O旋转至△GEF的位置,EF交AB于M,GF交BD于N.请猜想BM与FN有怎样的数量关系?并证明你的结论.