分别以□ABCD(∠CDA≠90°)的三边AB,CD,DA为斜边作等腰直角三角形,△ABE,△CDG,△ADF.(1)如图1,当三个等腰直角三角形都在该平行四边形外部时,连接GF,EF.请判断GF与EF的数量关系及位置关系;(只写结论,不需证明)(2)如图2,当三个等腰直角三角形都在该平行四边形内部时,连接GF,EF,(1)中结论还成立吗?若成立,给出证明;若不成立,说明理由.
解不等式组,把解集表示在数轴上,并求出不等式组的整数解.
先化简,再求值:,其中a2﹣4=0.
在矩形AOBC中,OB=6,OA=4,分別以OB,OA所在直线为x轴和y轴,建立如图所示的平面直角坐标系.F是BC上的一个动点(不与B、C重合),过F点的反比例函数的图象与AC边交于点E.(1)求证:AE•AO=BF•BO;(2)若点E的坐标为(2,4),求经过O、E、F三点的抛物线的解析式;(3)是否存在这样的点F,使得将△CEF沿EF对折后,C点恰好落在OB上?若存在,求出此时的OF的长:若不存在,请说明理由.
如图,已知AB为⊙O的直径,CD是弦,AB⊥CD于E,OF⊥AC于F,BE=OF.(1)求证:OF∥BC;(2)求证:△AFO≌△CEB;(3)若EB=5cm,CD=cm,设OE=x,求x值及阴影部分的面积.
已知:关于x的方程.(1)当x取何值时,二次函数的对称轴是;(2)求证:a取任何实数时,方程总有实数根.