如图,在Rt△ABC中,∠ACB=90°,AC=5,CB=12,AD是△ABC的角平分线,过A、C、D三点的圆与斜边AB交于点E,连接DE.求证:AC=AE;求△ACD外接圆的直径.
如图,在平面直角坐标系中,二次函数()的图象经过点A(-1,0)、点B(3,0)、点C(0,3). (1)求此抛物线的解析式及顶点D的坐标; (2)连结AC、CD、BD,试比较∠BCA与∠BDC的大小,并说明理由; (3)若在x轴上有一动点M,在抛物线上有一动点N,则M、N、B、C四点是否能构成平行四边形,若存在,请求出所有适合的点M的坐标;若不存在,请说明理由.
如图,△ABC和△AED是等腰直角三角形,∠BAC=∠EAD=90°,点D、E在∠BAC的外部,连结DC,BE. (1)求证:BE=CD; (2)若将△AED绕点A旋转,直线CD交直线AB于点G,交直线BE于点K. ①如果AC=8,GA=2,求GC·KG的值; ②当△BED为等腰直角三角形时,请你直接写出AB∶BD的值.
某玩具经销商用3.2万元购进了一批玩具,上市后一个星期恰好全部售完,该经销商又用6.8万元购进第二批这种玩具,所购数量是第一批购进数量的2倍,但每套进价多了10元. (1)该经销商两次共购进这种玩具多少套? (2)若第一批玩具售完后的总利润率为25%,购进第二批玩具后由于进价上涨,准备调整价格,发现若每套涨价1元,则每星期会少卖5套,问该经销商第二批玩具应该如何定价才能使利润最大?
如图,四边形ABCD是矩形,∠EDC=∠CAB,∠DEC=90°. (1)求证:AC∥DE; (2)过点B作BF⊥AC与点F,连接EF,试判断四边形BCEF的形状,并说明理由.
如图,直线l:与x轴交于点A,与y轴交于点B. (1)求点A与点B的坐标; (2)直线m与直线l平行,且与x轴交于点C,与y轴交于点D,若使,求直线m的解析式.