如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上,有下列结论:①CE=CF;②∠AEB=75°;③BE+DF=EF.其中正确结论的序号是(把你认为正确的都填上).
如图所示,□ABCD的对角线AC,BD相交于点O,E、F、G、H分别是OA、OB、OC、OD的中点,那么□ABCD与四边形EFGH是否是位似图形?为什么?
教学楼旁边有一棵树,学习了相似三角形后,数学小组的同学想利用树影来测量树高.课外活动时,在阳光下他们测得一根长为1m的竹竿的影长是0.9m,但当他们马上测量树高时,发现树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上(如图),经过一番争论,小组的同学认为继续测量也可以测出树高,他们测得落在地面的影长为2.7m,落在墙壁上的影长为1.2m,请你和他们一起算一下,树高为多少.
九年级(1)班课外活动小组利用标杆测量学校旗杆的高度,如图,已知标杆高度CD=3m,标杆与旗杆的水平距离BD=15m,人的眼睛与地面的高度EF=1.6m,人与标杆CD的水平距离DF=2m,求旗杆AB的高度.
在一次数学活动课上,老师让同学们到操场测量旗杆的高,然后交流各自的测量方法.小芳的测量方法是:将升旗用的两根绳子中的一根固定住不让红旗下落,拉动另一根绳子倾斜30°,测量出倾斜点距旗杆底的距离为am,然后在练习本上画一个直角三角形,使其一锐角为30°,这个锐角的相邻直角边为acm,然后通过计算,求出旗杆的高度,你认为这种测量方法是否可行?请说明理由.
数学实践活动课上,老师想让同学们设计测量一棵高不可攀的古树AB的高度的方案,现有的测量工具:①皮尺;②标杆;③平面镜;④带有刻度的直尺.请你按以下要求设计一个测量方案.(1)选择其中的一种或两种测量工具;(2)画出测量示意图;(3)写出测量步骤;(测量数据用字母表示)(4)计算树AB的高度.(写出求解或推理过程,结果用字母表示)