初中数学

如图,等腰直角△ABC(∠C=90°)的直角边长与正方形MNPQ的边长均为6cm,CA与MN在同一直线上,开始时A点与M点重合,让△ABC向右平移,直到C点与M点重合时为止,设△ABC与正方形MNPQ的重叠部分(图中阴影部分)的面积为ycm2,MA的长度为xcm.

(1)试写出y与x之间的函数表达式;
(2)当MA=4㎝时,重叠部分的面积是多少?
(3)当MA的长度是多少时,等腰直角△ABC与正方形MNPQ的重叠部分以外的四边形BCMD的面积与重叠部分的面积比为3:1?
(4)开始时等腰直角△ABC中A点与M点重合,已知△ABC向右移动的速度是1cm/s,在A点与N点重合后继续向右移动,当运动停止时边BC与PN重合,探究重叠部分的面积y(cm2)与运动时间t(s)的函数表达式.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,AD=8,OD=OB,□ABCD的面积为24,求平行四边形的4个顶点的坐标.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

一张长方形纸片,剪下一个正方形,剩下一个长方形,称为第一次操作;在剩下的长方形纸片中再剪下一个正方形,剩下一个长方形,称为第二次操作;…;若在第次操作后,剩下的长方形为正方形,则称原长方形为阶奇异长方形.如图1,长方形ABCD中,若AB=2,BC=6,则称长方形ABCD为2阶奇异长方形.

(1)判断与操作:如图2,长方形ABCD长为10,宽为4,它是奇异长方形,请写出它是____阶奇异长方形,并在图中画出裁剪线;
(2)探究与计算:已知长方形ABCD的一边长为30,另一边长为a(a<30),且它是3阶奇异长方形,请画出所有可能的长方形ABCD及裁剪线的示意图,并求出相应的值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,将长方形纸片ABCD沿对角线BD折叠得到△BDE,DE交AB于点G.

(1)求证:DG=BG;               
(2)若AD=4,AB=8,求△BDG的面积.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

对于边长为3的正方形ABCD,建立适当的直角坐标系,写出各个顶点的坐标.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图1,在直角坐标系中,点A的坐标为(1,0),以OA为一边在第一象限内作正方形OABC,点D是x轴正半轴上一动点(OD>1,且OD≠2),连接BD,以BD为边在第一象限内作正方形DBFE,设M为正方形DBFE的中心,直线MA交y轴于点N.如果定义:只有一组对角是直角的四边形叫做损矩形.

(1)试找出图1中的一个损矩形               
(2)试说明(1)中找出的损矩形一定有外接圆;
(3)随着点D的位置变化,点N的位置是否会发生变化?若没有发生变化,求出点N的坐标;若发生变化,请说明理由.
(4)在图2中,过点M作MG⊥y轴,垂足是点G,连结DN,若四边形DMGN为损矩形,求点D的坐标.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

在一个边长为a(单位:cm)的正方形ABCD中,点E、M分别是线段AC,CD上的动点,连结DE并延长交正方形的边于点F,过点M作MN⊥DF于H,交AD于N.

(1)如图1,当点M与点C重合,求证:DF=MN;
(2)如图2,假设点M从点C出发,以1cm/s的速度沿CD向点D运动,点E同时从点A出发,以cm/s速度沿AC向点C运动,运动时间为t(t>0);
①判断命题“当点F是边AB中点时,则点M是边CD的三等分点”的真假,并说明理由.
②连结FM、FN,△MNF能否为等腰三角形?若能,请写出a,t之间的关系;若不能,请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,点P是菱形ABCD对角线AC上的一点,连接DP并延长DP交边AB于点E,连接BP并延长交边AD于点F,交CD的延长线于点G.

(1)求证:△APB≌△APD;
(2)已知DF:FA=1:2,设线段DP的长为x,线段PF的长为y.
①求y与x的函数关系式;
②当x=6时,求线段FG的长.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,矩形ABCD中,E为BC上一点,DF⊥AE于F.

(1)ΔABE与ΔADF相似吗?请说明理由.
(2)若AB=6,AD=12,BE=8,求FD的长.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知一个多边形的内角和是,问这个多边形共有多少条对角线?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,△BAD是由△BEC在平面内绕点B旋转60°而得,且AB⊥BC,BE=CE,连接DE.

(1)求证:△BDE≌△BCE;
(2)试判断四边形ABED的形状,并说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知矩形ABCD的一条对角线长为8cm,两条对角线的一个夹角为60°,求矩形的边长.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知:如图,梯形ABCD中 ,AB∥CD,中位线EF长为20,AC与EF交于点G,GF-GE=5.
求AB、CD的长.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,矩形OABC是一张放在平面直角坐标系中的矩形纸片,点A在x轴上,点C在y轴上,OA=10、OC=8,

(1)如图,在AB上取一点E,使得△CBE沿CE翻折后,点B落在x轴上,记作点D.求点D的坐标;
(2)求折痕CE所在直线的解析式.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在▱ABCD中,∠ABD的平分线BE交AD于点E,∠CDB的平分线DF交BC于点F,连接BD.

(1)求证:△ABE≌△CDF;
(2)若AB=DB,求证:四边形DFBE是矩形.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

初中数学圆内接四边形的性质解答题