如图,把含有30°角的三角板ABO置入平面直角坐标系中,A,B两点坐标分别为(3,0)和(0,3).动点P从A点开始沿折线AO-OB-BA运动,点P在AO,OB,BA上运动的面四民﹒数学兴趣小组对捐款情况进行了抽样调查,速度分别为1,,2 (长度单位/秒)﹒一直尺的上边缘l从x轴的位置开始以(长度单位/秒)的速度向上平行移动(即移动过程中保持l∥x轴),且分别与OB,AB交于E,F两点﹒设动点P与动直线l同时出发,运动时间为t秒,当点P沿折线AO-OB-BA运动一周时,直线l和动点P同时停止运动.
请解答下列问题:
(1)过A,B两点的直线解析式是 ;
(2)当t﹦4时,点P的坐标为 ;当t ﹦ ,点P与点E重合;
(3)① 作点P关于直线EF的对称点P′.在运动过程中,若形成的四边形PEP′F为菱形,则t的值是多少?② 当t﹦2时,是否存在着点Q,使得△FEQ ∽△BEP ?若存在, 求出点Q的坐标;若不存在,请说明理由.
我们知道平行四边形有很多性质。现在如果我们把平行四边形沿着它的一条对角线翻折。会发现这其中还有更多的结论,如图,已知平行四边形ABCD中,∠B=30º,,将△ABC沿AC翻折至,连接。
【发现与证明】:如图1:求证:①△AGC是等腰三角形;
②(只选一个证明哟,4分)
【应用与解答】:如图2:如果AB=,BC=1,与CD相交于点E,求△AEC的面积
【拓展与探索】如果AB=,当BC的长为多少时,△AB′D是直角三角形?
在平面直角坐标系xOy中,直线分别与x轴,y轴交于过点A,B,点C是第一象限内的一点,且AB=AC,AB⊥AC,抛物线经过A,C两点,与轴的另一交点为D.
(1)求此抛物线的解析式;
(2)判断直线AB与CD的位置关系,并证明你的结论;
(3)点M为x轴上一动点,在抛物线上是否存在一点N,使以A,B,M,N四点构成的四边形为平行四边形?若存在,求点N的坐标;若不存在,请说明理由.
(本题14分)如图,点A和动点P在直线上,点P关于点A的对称点为Q,以AQ为边作Rt△ABQ,使∠BAQ=90°,AQ:AB=3:4,作△ABQ的外接圆O。点C在点P右侧,PC=4,过点C作直线⊥,过点O作OD⊥于点D,交AB右侧的圆弧于点E。在射线CD上取点F,使DF=CD,以DE,DF为邻边作矩形DEGF,设AQ=
(1)用关于的代数式表示BQ,DF;
(2)当点P在点A右侧时,若矩形DEGF的面积等于90,求AP的长;
(3)在点P的整个运动过程中,
①当AP为何值时,矩形DEGF是正方形?
②作直线BG交⊙O于另一点N,若BN的弦心距为1,求AP的长(直接写出答案)
(本小题满分14分)如图,四边形OMTN中,OM=ON,TM=TN,我们把这种两组邻边分别相等的四边形叫做筝形.
(1)试探究筝形对角线之间的位置关系,并证明你的结论;
(2)在筝形ABCD中,已知AB=AD=5,BC=CD,BC>AB,BD,AC为对角线,BD=8.
①是否存在一个圆使得A,B,C,D四个点都在这个圆上?若存在,求出圆的半径;若不存在, 请说明理由;
②过点B作BF⊥CD,垂足为F,BF交AC于点E,连接DE.当四边形ABED为菱形时,求点F到AB 的距离.
(本小题12分) 菱形ABCD的边长为2,∠BAD=60°,对角线AC,BD相交于点O,动点P在线段AC上从点A向点C运动,过P作PE∥AD,交AB于点E,过P作PF∥AB,交AD于点F,四边形QHCK与四边形PEAF关于直线BD对称. 设菱形ABCD被这两个四边形盖住部分的面积为S1,AP=x:
(1)对角线AC的长为 ;S菱形ABCD= ;
(2)用含x的代数式表示S1;
(3)设点P在移动过程中所得两个四边形PEAF与QHCK的重叠部分面积为S2,当S2=S菱形ABCD时,求x的值.
已知直角坐标系中菱形ABCD的位置如图所示,C.D两点的坐标分别为 (4,0)、(0,3).现有两动点P、Q分别从A、C同时出发,点P沿线段AD向终点D运动,点Q沿折线CBA向终点A运动,设运动时间为ts.
(1)菱形ABCD的边长是 ,面积是 , 高BE的长是 .(直接填写结果)
(2)探究下列问题:
①若点P的速度为1cm/s,点Q的速度为2 cm/s.当点Q在线段BA上时,求△APQ的面积S关于t的函数关系式,以及S的最大值;
②若点P的速度为1cm/s,点Q的速度变为kcm/s,在运动过程中,任何时刻都有相应的k值,使得△APQ沿它的一边翻折,翻折前后两个三角形组成的四边形为菱形,请探究当t=4s时的情形,并求出k的值.
如图,在锐角三角形纸片ABC中,AC>BC,点D,E,F分别在边AB,BC,CA上.
(1)已知:DE∥AC,DF∥BC.
①判断
四边形DECF一定是什么形状?并说明理由.
②裁剪
当AC=24cm,BC=20cm,∠ACB=45°时,请你探索:如何剪四边形DECF,能使它的面积最大,并证明你的结论;
(2)折叠
请你只用两次折叠,确定四边形的顶点D,E,C,F,使它恰好为菱形,并说明你的折法和理由.
在□ABCD中,点E、F分别在AB、CD上,且AE=CF.
(1)求证:△ADE≌△CBF;
(2)若DF=BF,求证:四边形DEBF为菱形.
如图,等腰梯形ABCD中,AB=CD,AD∥BC,点E、F在BC上,且BE=CF.
(1)求证:AE=DF;
(2)若AD=EF,试证明四边形AEFD为矩形.
已知矩形纸片ABCD中,AB=24厘米,BC=10厘米.
(1)按如下操作:先将矩形纸片上下对折,而后左右对折,再沿对角线对折,而后展开得到图中的折痕四边形EFGH(如图1),求菱形EFGH的面积.
(2)如图2,将矩形纸片ABCD折叠,使点A与点C重合得折痕EF,则四边形AECF必为菱形,请加以证明.
(3)请通过一定的操作,构造一个菱形EFGH(不同于第(1)题中的特殊图形),使菱形的四个顶点分别落在矩形ABCD的四条边上(E、F、G、H分别在边AB、BC、CD、DA上,且不与矩形ABCD的顶点重合).
①请简述操作的方法,并在图3中画出菱形EFGH.
②求菱形EFGH的面积的取值范围.
如图①,②在矩形ABCD中,将矩形折叠,使B落在边AD(含端点)上,落点记为E,这时折痕与边BC或者边CD(含端点)交于F,然后展开铺平,则以B、E、F为顶点的三角形△BEF称为矩形ABCD的“折痕三角形”
(1)由“折痕三角形”的定义可知,矩形ABCD的任意一个“折痕△BEF”是一个 三角形。
(2)如图③,在矩形ABCD中,AB=2,BC=4,,当它的“折痕△BEF”的顶点E位于AD的中点时,画出这个“折痕△BEF”,并求出点F的坐标;
(3)如图④,在矩形ABCD中,AB=2,BC=4,该矩形是否存在面积最大的“折痕△BEF”?若存在,说明理由,并求出此时点E的坐标?若不存在,为什么?
如图,矩形ABCD的边AB=3cm,AD=4cm,点E从点A出发,沿射线AD移动,以CE为直径作圆O,点F为圆O与射线BD的公共点,连接EF、CF,过点E作EG⊥EF,EG与圆O相交于点G,连接CG.
(1)试说明四边形EFCG是矩形;
(2)当圆O与射线BD相切时,点E停止移动,在点E移动的过程中,
①矩形EFCG的面积是否存在最大值或最小值?若存在,求出这个最大值或最小值;若不存在,说明理由;
②求点G移动路线的长.
已知矩形OABC中,OA=3,AB=6,以OA、OC所在的直线为坐标轴,建立如图所示的平面直角坐标系。将矩形OABC绕点O顺时针方向旋转,得到矩形ODEF,当点B在直线DE上时,设直线DE和轴交于点P,与轴交于点Q.
(1)求证:△BCQ≌△ODQ;
(2)求点P的坐标;
如图,在矩形ABCD中,AB=6cm,BC=8cm.如果点E由点B出发沿BC方
向向点C匀速运动,同时点F由点D出发沿DA方向向点A匀速运动,它们的速度分别为2cm/s和1cm/s.FQ⊥BC,分别交AC、BC于点P和Q,设运动时间为t(s)(0<t<4).
(1)连结EF、DQ,若四边形EQDF为平行四边形,求t的值;
(2)连结EP,设△EPC的面积为ycm2,求y与t的函数关系式,并求y的最大值;