如图,矩形ABCD的边AB=3cm,AD=4cm,点E从点A出发,沿射线AD移动,以CE为直径作圆O,点F为圆O与射线BD的公共点,连接EF、CF,过点E作EG⊥EF,EG与圆O相交于点G,连接CG.(1)试说明四边形EFCG是矩形;(2)当圆O与射线BD相切时,点E停止移动,在点E移动的过程中,①矩形EFCG的面积是否存在最大值或最小值?若存在,求出这个最大值或最小值;若不存在,说明理由;②求点G移动路线的长.
如图,已知直线过点和,是轴正半轴上的动点,的垂直平分线交于点,交轴于点.(1)直接写出直线的解析式;(2)当时,设,的面积为,求S关于t的函数关系式;并求出S的最大值;(3)当点Q在线段AB上(Q与A、B不重合)时,直线过点A且与x轴平行,问在上是否存在点C,使得是以为直角顶点的等腰直角三角形?若存在,求出点C的坐标,并证明;若不存在,请说明理由.
北京奥运会开幕前,某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销.商场又用68000元购进第二批这种运动服,所够数量是第一批购进数量的2倍,但每套进价多了10元.(1)该商场两次共购进这种牌运动服多少套?(2)如果这两批运动服每套的售价相同,且全部售完后总利润率不低于20%,那么每套售价至少是多少元?()
已知:如图,⊙O是△ABC的外接圆,AB为⊙O直径,且PA⊥AB于点A,PO⊥AC于点M.(1)求证:是⊙的切线;(2)当,时,求PC的长.
如图,在□ABCD中,E、F分别是AB、CD的中点,连接AF、CE.(1)求证:△BEC≌△DFA;(2)连接AC,当CA=CB时,判断四边形AECF是什么特殊四边形?并证明你的结论.
在本学期某次考试中,某校初二⑴、初二⑵两班学生数学成绩统计如下表:
请根据表格提供的信息回答下列问题:(1)初二⑴班平均成绩为_________分,初二⑵班平均成绩为________分,从平均成绩看两个班成绩谁优谁次?(2)二⑴班众数为________分,二⑵班众数为________分。(3)初二⑴班及格率为_________,初二⑵班及格率为________。(4)已知二⑴班的方差大于二⑵班的方差,那么说明什么?