如图,已知直线过点和,是轴正半轴上的动点,的垂直平分线交于点,交轴于点.(1)直接写出直线的解析式;(2)当时,设,的面积为,求S关于t的函数关系式;并求出S的最大值;(3)当点Q在线段AB上(Q与A、B不重合)时,直线过点A且与x轴平行,问在上是否存在点C,使得是以为直角顶点的等腰直角三角形?若存在,求出点C的坐标,并证明;若不存在,请说明理由.
为响应市政府“创建国家森林城市”的号召,某小区计划购进A、B两种树苗共17棵,已知A种树苗每棵80元,B种树苗每棵60元.(1)若购进A、B两种树苗刚好用去1220元,问购进A、B两种树苗各多少棵?(2)若购买B种树苗的数量少于A种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用.
超速行驶是引发交通事故的主要原因之一.上周末,小明和三位同学尝试用自己所学的知识检测车速.如图,观测点设在A处,离益阳大道的距离(AC)为30米.这时,一辆小轿车由西向东匀速行驶,测得此车从B处行驶到C处所用的时间为8秒,∠BAC=75°.(1)求B、C两点的距离;(2)请判断此车是否超过了益阳大道60千米/小时的限制速度?(计算时距离精确到1米,参考数据:sin75°≈0.9659,cos75°≈0.2588,tan75°≈3.732,,60千米/小时≈16.7米/秒)
某市每年都要举办中小学三独比赛(包括独唱、独舞、独奏三个类别),如图是该市2012年参加三独比赛的不完整的参赛人数统计图.(1)该市参加三独比赛的总人数是 人,图中独唱所在扇形的圆心角的度数是 度,并把条形统计图补充完整;(2)从这次参赛选手中随机抽取20人调查,其中有9人获奖,请你估算今年全市约有多少人获奖?
如图,已知AE∥BC,AE平分∠DAC.求证:AB=AC.
计算代数式的值,其中a=1,b=2,c=3.