首页 / 初中数学 / 试卷选题

2015年初中毕业升学考试(浙江温州卷)数学

给出四个数0,,-1,其中最小的是(   )

A.0 B. C. D.-1
来源:2015年初中毕业升学考试(浙江温州卷)数学
  • 题型:未知
  • 难度:未知

将一个长方体内部挖去一个圆柱(如图所示),它的主视图是(   )

来源:2015年初中毕业升学考试(浙江温州卷)数学
  • 题型:未知
  • 难度:未知

某校学生参加体育兴趣小组情况的统计图如图所示。若参加人数最少的小组有25人,则参加人数最多的小组有(   )

A.25人 B.35人 C.40人 D.100人
来源:2015年初中毕业升学考试(浙江温州卷)数学
  • 题型:未知
  • 难度:未知

下列选项中的图形,不属于中心对称图形的是(   )

A.等边三角形 B.正方形 C.正六边形 D.圆
来源:2015年初中毕业升学考试(浙江温州卷)数学
  • 题型:未知
  • 难度:未知

如图,在△ABC中,∠C=90°,AB=5,BC=3,则cosA的值是(   )

A. B. C. D.
来源:2015年初中毕业升学考试(浙江温州卷)数学
  • 题型:未知
  • 难度:未知

若关于的一元二次方程有两个相等实数根,则的值是(  )

A.-1 B.1 C.-4 D.4
来源:2015年初中毕业升学考试(浙江温州卷)数学
  • 题型:未知
  • 难度:未知

不等式组的解是(   )

A.x<1 B.x≥3 C.1≤x<3 D.1<x≤3
来源:2015年初中毕业升学考试(浙江温州卷)数学
  • 题型:未知
  • 难度:未知

如图,点A的坐标是(2,0),△ABO是等边三角形,点B在第一象限。若反比例函数的图象经过点B,则的值是(   )

A.1 B.2 C. D.
来源:2015年初中毕业升学考试(浙江温州卷)数学
  • 题型:未知
  • 难度:未知

如图,在Rt∠AOB的平分线ON上依次取点C,F,M,过点C作DE⊥OC,分别交OA,OB于点D,
E,以FM为对角线作菱形FGMH,已知∠DFE=∠GFH=120°,FG=FE。设OC=x,图中阴影部分面积为y,则y
与x之间的函数关系式是(    )

A. B. C. D.
来源:2015年初中毕业升学考试(浙江温州卷)数学
  • 题型:未知
  • 难度:未知

如图,C是以AB为直径的半圆O上一点,连结AC,BC,分别以AC,BC为边向外作正方形ACDE,BCFG,DE,FG,的中点分别是M,N,P,Q。若MP+NQ=14,AC+BC=18,则AB的长是(   )

A. B. C.13 D.16
来源:2015年初中毕业升学考试(浙江温州卷)数学
  • 题型:未知
  • 难度:未知

分解因式:=   .

来源:2015年初中毕业升学考试(浙江温州卷)数学
  • 题型:未知
  • 难度:未知

一个不透明的袋子中只装有1个红球和2个蓝球,它们除颜色外其余都相同。现随机从袋中摸出两个球,颜色是一红一蓝的概率是   .

来源:2015年初中毕业升学考试(浙江温州卷)数学
  • 题型:未知
  • 难度:未知

已知扇形的圆心角为120°,弧长为,则它的半径为   .

来源:2015年初中毕业升学考试(浙江温州卷)数学
  • 题型:未知
  • 难度:未知

方程的根是   .

来源:2015年初中毕业升学考试(浙江温州卷)数学
  • 题型:未知
  • 难度:未知

某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示
的三处各留1m宽的门。已知计划中的材料可建墙体(不包括门)总长为27m,则能建成的饲养室总占地面
积最大为   m2

来源:2015年初中毕业升学考试(浙江温州卷)数学
  • 题型:未知
  • 难度:未知

图甲是小明设计的带菱形图案的花边作品,该作品由形如图乙的矩形图案拼接而成(不重叠,
无缝隙)。图乙种,,EF=4cm,上下两个阴影三角形的面积之和为54cm2,其内部菱形由两组距离
相等的平行线交叉得到,则该菱形的周长为   cm

来源:2015年初中毕业升学考试(浙江温州卷)数学
  • 题型:未知
  • 难度:未知

(本题10分)(1)计算:
(2)化简:

来源:2015年初中毕业升学考试(浙江温州卷)数学
  • 题型:未知
  • 难度:未知

(本题8分)如图,点C,E,F,B在同一直线上,点A,D在BC异侧,AB∥CD,AE=DF,∠A=∠D。

(1)求证:AB=CD;
(2)若AB=CF,∠B=30°,求∠D的度数。

来源:2015年初中毕业升学考试(浙江温州卷)数学
  • 题型:未知
  • 难度:未知

(本题8分)某公司需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方面进行量化考核。甲、乙、丙各项得分如下表:

 
笔试
面试
体能

83
79
90

85
80
75

80
90
     73[:m]

 
(1)根据三项得分的平均分,从高到低确定三名应聘者的排名顺序;
(2)该公司规定:笔试、面试、体能分分别不得低于80分、80分、70分,并按60%,30%,10%的比例计入总分。根据规定,请你说明谁将被录用。

来源:2015年初中毕业升学考试(浙江温州卷)数学
  • 题型:未知
  • 难度:未知

(本题8分)各顶点都在方格纸格点(横竖格子线的交错点)上的多边形称为格点多边形。如何计算它的面积?奥地利数学家皮克(G.Pick,1859~1942)证明了格点多边形的面积公式:,其中表示多边形内部的格点数,表示多边形边界上的格点数,S表示多边形的面积。如图,

(1)请在图甲中画一个格点正方形,使它内部只含有4个格点,并写出它的面积;
(2)请在图乙中画一个格点三角形,使它的面积为,且每条边上除顶点外无其它格点。(注:图甲、图乙在答题纸上)

来源:2015年初中毕业升学考试(浙江温州卷)数学
  • 题型:未知
  • 难度:未知

(本题10分)如图,AB是半圆O的直径,CD⊥AB于点C,交半圆于点E, DF切半圆于点F。已知∠AEF=135°。

(1)求证:DF∥AB;
(2)若OC=CE,BF=,求DE的长。

来源:2015年初中毕业升学考试(浙江温州卷)数学
  • 题型:未知
  • 难度:未知

(本题10分)某农业观光园计划将一块面积为900m2的园圃分成A,B,C三个区域,分别种植甲、乙、丙三种花卉,且每平方米栽种甲3株或乙6株或丙12株。已知B区域面积是A的2倍,设A区域面积为
(1)求该园圃栽种的花卉总株数关于的函数表达式;
(2)若三种花卉共栽种6600株,则A,B,C三个区域的面积分别是多少?
(3)已知三种花卉的单价(都是整数)之和为45元,且差价均不超过10元,在(2)的前提下,全部栽种共需84000元,请写出甲、乙、丙三种花卉中,种植面积最大的花卉总价。

来源:2015年初中毕业升学考试(浙江温州卷)数学
  • 题型:未知
  • 难度:未知

(本题12分)如图,抛物线轴正半轴于点A,顶点为M,对称轴NB交轴于点B,过点C(2,0)作射线CD交MB于点D(D在轴上方),OE∥CD交MB于点E,EF∥轴交CD于点F,作直线MF。

(1)求点A,M的坐标;
(2)当BD为何值时,点F恰好落在抛物线上?
(3)当BD=1时,①、求直线MF的解析式,并判断点A是否落在该直线上;
②、延长OE交FM于点G,取CF中点P,连结PG,△FPG,四边形DEGP,四边形OCDE的面积分别记为S1,S2,S3,则S1:S2:S3=   

来源:2015年初中毕业升学考试(浙江温州卷)数学
  • 题型:未知
  • 难度:未知

(本题14分)如图,点A和动点P在直线上,点P关于点A的对称点为Q,以AQ为边作Rt△ABQ,使∠BAQ=90°,AQ:AB=3:4,作△ABQ的外接圆O。点C在点P右侧,PC=4,过点C作直线,过点O作OD⊥于点D,交AB右侧的圆弧于点E。在射线CD上取点F,使DF=CD,以DE,DF为邻边作矩形DEGF,设AQ=

(1)用关于的代数式表示BQ,DF;
(2)当点P在点A右侧时,若矩形DEGF的面积等于90,求AP的长;
(3)在点P的整个运动过程中,
①当AP为何值时,矩形DEGF是正方形?
②作直线BG交⊙O于另一点N,若BN的弦心距为1,求AP的长(直接写出答案)

来源:2015年初中毕业升学考试(浙江温州卷)数学
  • 题型:未知
  • 难度:未知