如图,在平面直角坐标系中,点O为坐标系原点,矩形OABC的边OA,OC分别在x轴和y轴上,其中OA=6,OC=3.已知反比例函数(x>0)的图象经过BC边上的中点D,交AB于点E.
(1)k的值为_________;
(2)猜想△OCD的面积与△OBE的面积之间的关系,请说明理由.
如图,OABC是一张放在平面直角坐标系中的长方形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=10,OC=8,在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处,求D、E两点的坐标.
如图,四边形ABCD的对角线AC、BD相交于点O,点E是CD的中点.
(1)作点P,使它与点O关于点E成中心对称,连接CP、DP;
(2)若四边形ABCD是矩形,试判断(1)中所得四边形CODP的形状并说明理由;
(3)若(1)中所得四边形CODP是正方形,请用图中的字母和符号表示四边形ABCD应满足的条件:_________.
如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m的住房墙,另外三边用25m长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m2?
如图,在Rt△ABC中,∠ACB=90°,过C直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.
(1)求证:CE=AD;
(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;
(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.
如图,在其中△ABC中,点E、D、F分别在变AB、BC、CA上,且DE∥CA,DF∥BA。下列说法中错误的是( )
A、四边形AEDF是平行四边形
B、如果∠BAC=90°,那么四边形AEDF是矩形
C、如果AD平分∠BAC,那么四边形AEDF是菱形
D、如果AD⊥BC且AB=AC,那么四边形AEDF是正方形
如图,等腰直角△ABC(∠C=90°)的直角边长与正方形MNPQ的边长均为6cm,CA与MN在同一直线上,开始时A点与M点重合,让△ABC向右平移,直到C点与M点重合时为止,设△ABC与正方形MNPQ的重叠部分(图中阴影部分)的面积为ycm2,MA的长度为xcm.
(1)试写出y与x之间的函数表达式;
(2)当MA=4㎝时,重叠部分的面积是多少?
(3)当MA的长度是多少时,等腰直角△ABC与正方形MNPQ的重叠部分以外的四边形BCMD的面积与重叠部分的面积比为3:1?
(4)开始时等腰直角△ABC中A点与M点重合,已知△ABC向右移动的速度是1cm/s,在A点与N点重合后继续向右移动,当运动停止时边BC与PN重合,探究重叠部分的面积y(cm2)与运动时间t(s)的函数表达式.
一张长方形纸片,剪下一个正方形,剩下一个长方形,称为第一次操作;在剩下的长方形纸片中再剪下一个正方形,剩下一个长方形,称为第二次操作;…;若在第次操作后,剩下的长方形为正方形,则称原长方形为阶奇异长方形.如图1,长方形ABCD中,若AB=2,BC=6,则称长方形ABCD为2阶奇异长方形.
(1)判断与操作:如图2,长方形ABCD长为10,宽为4,它是奇异长方形,请写出它是____阶奇异长方形,并在图中画出裁剪线;
(2)探究与计算:已知长方形ABCD的一边长为30,另一边长为a(a<30),且它是3阶奇异长方形,请画出所有可能的长方形ABCD及裁剪线的示意图,并求出相应的值.
如图,点P是菱形ABCD对角线AC上的一点,连接DP并延长DP交边AB于点E,连接BP并延长交边AD于点F,交CD的延长线于点G.
(1)求证:△APB≌△APD;
(2)已知DF:FA=1:2,设线段DP的长为x,线段PF的长为y.
①求y与x的函数关系式;
②当x=6时,求线段FG的长.
如图,△BAD是由△BEC在平面内绕点B旋转60°而得,且AB⊥BC,BE=CE,连接DE.
(1)求证:△BDE≌△BCE;
(2)试判断四边形ABED的形状,并说明理由.
如图,矩形OABC是一张放在平面直角坐标系中的矩形纸片,点A在x轴上,点C在y轴上,OA=10、OC=8,
(1)如图,在AB上取一点E,使得△CBE沿CE翻折后,点B落在x轴上,记作点D.求点D的坐标;
(2)求折痕CE所在直线的解析式.
如图,在▱ABCD中,∠ABD的平分线BE交AD于点E,∠CDB的平分线DF交BC于点F,连接BD.
(1)求证:△ABE≌△CDF;
(2)若AB=DB,求证:四边形DFBE是矩形.