初中数学

(本小题满分10分)如图,在四边形ABCD中,AD∥BC,,AD=8cm,BC=10cm,
AB=6cm,,点Q从点A出发以1cm/s的速度向点D运动,点P从点B出发以2cm/s的速度向点C运动,P、Q两点同时出发,当点P到达点C时,两点同时停止运动.若设运动时间为t().

(1)直接写出:QD=          =         ;(用含t的式子表示)
(2)当t为何值时,四边形PQDC为平行四边形?
(3)若点P与点C不重合,且DQ≠DP,当为何值时,是等腰三角形?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,将长方形ABCD沿着对角线BD折叠,使点C落在C′处,BC′交AD于点E.

(1)试判断△BDE的形状,并说明理由;
(2)若AB=4,AD=8,求△BDE的面积.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分8分)如下图,过正方形ABCD的顶点B作直线l,过点A,C作直线l的垂线,垂足分别为E,F,直线AE交CD于点G.

(1)求证:△ABE≌△ABE;
(2)若∠CBF=65°,求∠AGC的度数.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图1,将三角板放在正方形ABCD上,使三角板的直角顶点E与正方形ABCD的顶点A重合,三角板的一边交CD于点F,另一边交CB的延长线于点G.

(1)求证:EF=EG;
(2)如图2,移动三角板,使顶点E始终在正方形ABCD的对角线AC上,其他条件不变.(1)中的结论是否仍然成立?若成立,情给予证明;若不成立,请说明理由;

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,O是△ABC的内心,BO的延长线和△ABC的外接圆相交于D,连接DC、DA、OA、OC,四边形OADC为平行四边形。

(1)求证:△BOC≌△CDA
(2)若AB=2,求阴影部分的面积。

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.

(1)求证:四边形BCFE是菱形;
(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,四边形 ABCD 内接于 O BC O 的直径, AC BD 交于点 E P CB 延长线上一点,连接 PA ,且 PAB = ADB

(1)求证: PA O 的切线;

(2)若 AB = 6 tan ADB = 3 4 ,求 PB 长;

(3)在(2)的条件下,若 AD = CD ,求 ΔCDE 的面积.

来源:2018年湖北省鄂州市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

一个多边形,它的内角和比外角和的4倍多180°,求这个多边形的边数及内角和度数.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知,如图,在矩形ABCD中,点E,F在边AD上,且AE=DF,求证:BF=CE.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图:在平行四边形ABCD中,E,F为对角线BD上的两点,且∠BAE=∠DCF.求证:BE=DF.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图所示,已知BD⊥CD于D,EF⊥CD于F,,其中为锐角,求证:

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,外角的平分线,交于点交于点交于点交于点,求证:四边形是菱形.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知, ,试解答下列问题:
(1)如图所示,则___________°,并判断OB与AC平行吗?为什么?

(2)如图,若点在线段上,且满足 ,并且平分.则的度数等于_____________°;

(3)在第(2)题的条件下,若平行移动,如图.

①求:的值;
②当时,求的度数(直接写出答案,不必写出解答过程).

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,已知四边形ABCD和DEFG都是正方形,连接AE、CG.请猜想AE与CG有什么数量关系?并证明你的猜想.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,长方形,边.将此长方形沿折叠,使点与点重合,点落在点处.

(1)试判断的形状,并说明理由;
(2)求的面积.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

初中数学圆内接四边形的性质计算题