如图,已知 、 是 上两点, 外角的平分线交 于另一点 , 交 的延长线于 .
(1)求证: 是 的切线;
(2) 为 的中点, 为 上一点, 交 于 ,若 , , ,求 的半径.
在一次数学活动课中,某数学小组探究求环形花坛(如图所示)面积的方法,现有以下工具;①卷尺;②直棒 ;③ 型尺 所在的直线垂直平分线段 .
(1)在图1中,请你画出用 形尺找大圆圆心的示意图(保留画图痕迹,不写画法);
(2)如图2,小华说:“我只用一根直棒和一个卷尺就可以求出环形花坛的面积,具体做法如下:
将直棒放置到与小圆相切,用卷尺量出此时直棒与大圆两交点 , 之间的距离,就可求出环形花坛的面积.”如果测得 ,请你求出这个环形花坛的面积.
如图,四边形 为 的内接四边形.延长 与 相交于点 , ,垂足为 ,连接 , ,则 的度数为
A. B. C. D.
已知 是 的直径, 是圆上一点, 的平分线交 于点 ,过 作 交 的延长线于点 ,如图①.
(1)求证: 是 的切线;
(2)若 , ,求 的长;
(3)如图②,若 是 中点, 交直线 于点 ,若 , ,求 的半径.
如图,已知 的直径 ,弦 , 是 的中点,过点 作 ,交 的延长线于点 .
(1)求证: 是 的切线;
(2)求 的长.
如图,点 是 的内心, 的延长线交 于点 ,交 的外接圆 于点 ,连接 ,过点 作直线 ,使 .
(1)求证:直线 是 的切线;
(2)求证: .
如图, 、 为 的直径,且 ,点 在 上,连接 、 , 于点 ,若 ,则 的度数是
A. B. C. D.
在平面直角坐标系中,点 的坐标为 ,以 为圆心的圆与 轴相切, 的弦 点在 点右侧)垂直于 轴,且 ,反比例函数 经过点 ,则 或 .
如图,在平面直角坐标系中, 与 轴相切于点 ,与 轴分别交于点 和点 ,则圆心 到坐标原点 的距离是
A.10B. C. D.
已知: 为 的直径,延长 到点 ,过点 作圆 的切线,切点为 ,连接 ,且 .
(1)求 的度数;
(2)若点 是弧 的中点,连接 交 于点 ,且 ,求 的面积. 取
如图,点 , , 均在 的正方形网格格点上,过 , , 三点的外接圆除经过 , , 三点外还能经过的格点数为 .