初中数学

操作:小英准备制作一个表面积为6cm2的正方体纸盒,现选用一些废弃的纸片进行如下设计:

说明:
方案一:图形中的圆过点A.B.C;
方案二:直角三角形的两直角边与展开图左下角的正方形边重合,斜边经过两个正方形的顶点.
纸片利用率=×100%
发现:(1)小英发现方案一中的点A.B恰好为该圆一直径的两个端点.你认为小英的这个发现是否正确,请说明理由.
(2)小英通过计算,发现方案一中纸片的利用率仅约为38.2%.请帮忙计算方案二的利用率,并写出求解过程.(结果精确到0.1%)
探究:(3)小英感觉上面两个方案的利用率均偏低,又进行了新的设计(方案三),请直接写出方案三的利用率.(结果精确到0.1%)

说明:方案三中的每条边均过其中两个正方形的顶点.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,将矩形纸片ABCD的四个角向内折起,恰好拼成一个无缝隙无重叠的四边形EFGH,若EH=3,EF=4,则边AD的长是()

A.2 B.3 C.4.8 D.5
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图①所示,已知A、B为直线a上两点,点C为直线a上方一动点,连接AC、BC,分别以AC、BC为边向△ABC外作正方形CADF和正方形CBEG,过点D作D⊥a于点,过点E作E⊥a于点

(1)如图②,当点E恰好在直线a上时,(此时E1和E重合)。试说明D=AB;
(2)如图①中,当D、E两点都在直线a的上方时,试探求三条线段D、E、AB之间的数量关系,并说明理由。
(3)如图③,当点E在直线a的下方时,请直接写出三条线段D、E、AB之间的数量关系。(不需要证明)

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,正方形ABCD的边长为2,将长为2的线段QF的两端放在正方形相邻的两边上同时滑动.如果点Q从点A出发,沿图中所示方向按A→B→C→D→A滑动到点A为止,同时点F从点B出发,沿图中所示方向按B→C→D→A→B滑动到点B为止,那么在这个过程中,线段QF的中点M所经过的路线围成的图形的面积为      

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分9分)如图,在矩形ABCD中,E是CD边上一动点,设DE=x,作AF⊥AE交CB的延长线于点F.

(1)当点E不与点C,D重合时,求证:△ADE∽△ABF;
(2)连接EF,M为EF的中点,AB=4,AD=2, 当点E从D运动到C的过程中
①点M经过的路径是(   )

A.直线 B.线段 C.射线 D.圆弧

②求点M经过的路径的长;
③连接BM,直接写出BM的长度的最小值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本题10分)如图,正方形ABCD和正方形AEFG有公共的顶点A,连BG、DE,M为DE的中点,连AM.

(1)如图1,AE、AG分别与AB、AD重合时,AM和BG的大小和位置关系分别是       _    ____
(2)将图1中的正方形AEFG绕A点旋转到如图2,则(1)中的结论是否仍成立?试证明你的结论;
(3)若将图1中的正方形AEFG绕A点逆时针旋转到正方形ABCD外时,则AM和BG的大小和位置关系分别是__________、____________,请你在图3中画出图形,并直接写出结论,不要求证明.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

正方形ABCD中,E、F是AD上的两个点,AE=DF,连CF交BD于点M,连AM交BE于点N,连结DN.如果正方形的边长为2.
  
(1)求证:BE⊥AM;
(2)求DN的最小值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

猜想与证明:
如图1摆放矩形纸片ABCD与矩形纸片ECGF,使B、C、G三点在一条直线上,CE在边CD上,连接AF,若M为AF的中点,连接DM、ME,试猜想DM与ME的关系,并证明你的结论.
拓展与延伸:
(1)若将”猜想与证明“中的纸片换成正方形纸片ABCD与正方形纸片ECGF,其他条件不变,则DM和ME的关系为          
(2)如图2摆放正方形纸片ABCD与正方形纸片ECGF,使点F在边CD上,点M仍为AF的中点,试证明(1)中的结论仍然成立.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知:如图,在△ABC中,∠BAC=90°,DE、DF是△ABC 的中位线,连接EF、AD,
求证:EF=AD.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在四边形ABCD中,AB=AD,∠DAB=∠BCD=90°,设p=BC+CD, 四边形ABCD的面积为S.

(1)试探究之间的关系,并说明理由;
(2)若四边形的面积为9,求的值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知:如图①,在Rt△ACB中,∠C=90°,AC="4" cm,BC="3" cm,点P由B出发沿BA方向向点A匀速运动,速度为1cm/s;点Q由A出发沿AC方向向点C匀速运动,速度为2cm/s;连接PQ.若设运动的时间为t(s)(0<t<2),解答下列问题:

(1)当t为何值时,PQ∥BC;
(2)设△AQP的面积为y(cm2),求y与t之间的函数关系式;
(3)是否存在某一时刻t,使线段PQ恰好把Rt△ACB的周长和面积同时平分?若存在,求出此时t的值;若不存在,说明理由;
(4)如图②,连接PC,并把△PQC沿QC翻折,得到四边形PQP′C,那么否存在某一时刻t,使四边形PQP′C为菱形?若存在,求出此时菱形的边长;若不存在,说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本题满分11分.为方便答题,可在答卷上画出你认为必要的图形)
如图,已知:等腰梯形ABCD中,AD∥BC,AB=CD,E、F、G、H分别是AD、BC、BE、CE的中点.

(1)求证:△ABE≌△DCE;
(2)四边形EGFH是什么特殊四边形?并证明你的结论.
(3)连接EF,当四边形EGFH是正方形时,线段EF与BC有什么数量关系?请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,矩形OCDE的三个顶点分别是C(3,0),D(3,4),E(0,4).点A在DE上,以A为顶点的抛物线过点C,且对称轴交z轴于点B.连接EC,AC.点P,Q为动点,设运动时间为t秒.

(1)填空:点A坐标为    ,抛物线的解析式为    
(2)在图1中,若点P在线段OC上从点O向点C以1个单位/秒的速度运动,同时,点Q在线段CE上从点C向E以2个单位/秒的速度运动,当一个点到达终点时,另一个点随之停止运动.连接PQ,是否存在实数t,使得PQ所在的直线经过点D,若存在,求出t的值;若不存在,请说明理由;
(3)在图2中,若点P在对称轴上从点A开始向点B以1个单位/秒的速度运动,过点P做PF⊥AB,交AC于点F,过点F作FG⊥AD于点G,交抛物线于点Q,连接AQ,CQ.当t为何值时,△ACQ的面积最大?最大值是多少?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,已知正比例函数和反比例函数的图象交于点A(m,-2).

(1)求反比例函数的解析式;
(2)观察图象,直接写出正比例函数值大于反比例函数值时自变量x的取值范围;
(3)若双曲线上点C(2,n)沿OA方向平移个单位长度得到点B,判断四边形OABC的形状并证明你的结论.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知在矩形中,是边上的一动点,联结,过点作射线交线段的延长线于点,交边于点,且使得,如果

(1)求关于的函数解析式,并写出它的定义域;
(2)当时,求的正切值;
(3)如果△是以为底角的等腰三角形,求的长;

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

初中数学圆试题