初中数学

如图,在 ABCD 中, DC > AD ,四个角的平分线 AE DE BF CF 的交点分别是 E F ,过点 E F 分别作 DC AB 间的垂线 M M ' N N ' ,在 DC AB 上的垂足分别是 M N M ' N ' ,连接 EF

(1)求证:四边形 EFNM 是矩形;

(2)已知: AE = 4 DE = 3 DC = 9 ,求 EF 的长.

来源:2018年广西玉林市中考数学试卷
  • 更新:2021-04-29
  • 题型:未知
  • 难度:未知

如图所示, ΔABC 中, D BC 边上一点, E AD 的中点,过点 A BC 的平行线交 CE 的延长线于 F ,且 AF = BD ,连接 BF

(1)求证: D BC 的中点;

(2)若 AB = AC ,试判断四边形 AFBD 的形状,并证明你的结论.

来源:2016年四川省内江市中考数学试卷
  • 更新:2021-04-23
  • 题型:未知
  • 难度:未知

如图,△ ABC中, DBC边上一点, EAD的中点,过点 ABC的平行线交 BE的延长线于 F,且 AFCD,连接 CF

(1)求证:△ AEF≌△ DEB

(2)若 ABAC,试判断四边形 ADCF的形状,并证明你的结论.

来源:2018年内蒙古通辽市中考数学试卷
  • 更新:2021-04-09
  • 题型:未知
  • 难度:未知

如图,等腰三角形 ABC中, BDCE分别是两腰上的中线.

(1)求证: BDCE

(2)设 BDCE相交于点 O,点 MN分别为线段 BOCO的中点,当△ ABC的重心到顶点 A的距离与底边长相等时,判断四边形 DEMN的形状,无需说明理由.

来源:2017年内蒙古呼和浩特市中考数学试卷
  • 更新:2021-03-22
  • 题型:未知
  • 难度:未知

已知:如图,在中,分别为垂足.

(1)求证:

(2)求证:四边形是矩形.

来源:2019年湖南省怀化市中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

如图,在中,对角线相交于点,点分别为的中点,延长,使,连接

(1)求证:

(2)当满足什么数量关系时,四边形是矩形?请说明理由.

来源:2019年山东省青岛市中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

综合与实践

动手操作:

第一步:如图1,正方形纸片沿对角线所在的直线折叠,展开铺平.在沿过点的直线折叠,使点,点都落在对角线上.此时,点与点重合,记为点,且点,点,点三点在同一条直线上,折痕分别为.如图2.

第二步:再沿所在的直线折叠,重合,得到图3.

第三步:在图3的基础上继续折叠,使点与点重合,如图4,展开铺平,连接.如图5,图中的虚线为折痕.

问题解决:

(1)在图5中,的度数是  的值是  

(2)在图5中,请判断四边形的形状,并说明理由;

(3)在不增加字母的条件下,请你以图中5中的字母表示的点为顶点,动手画出一个菱形(正方形除外),并写出这个菱形:  

来源:2019年山西省中考数学试卷
  • 更新:2021-01-04
  • 题型:未知
  • 难度:未知

综合与实践

问题情境

在综合与实践课上,老师让同学们以"菱形纸片的剪拼"为主题开展数学活动,如图1,将一张菱形纸片 ABCD ( BAD > 90 ° ) 沿对角线 AC 剪开,得到 ΔABC ΔACD

操作发现

(1)将图1中的 ΔACD A 为旋转中心,按逆时针方向旋转角 α ,使 α = BAC ,得到如图2所示的△ AC ' D ,分别延长 BC DC ' 交于点 E ,则四边形 ACEC ' 的形状是    

(2)创新小组将图1中的 ΔACD A 为旋转中心,按逆时针方向旋转角 α ,使 α = 2 BAC ,得到如图3所示的△ AC ' D ,连接 DB C ' C ,得到四边形 BCC ' D ,发现它是矩形,请你证明这个结论;

实践探究

(3)缜密小组在创新小组发现结论的基础上,量得图3中 BC = 13 cm AC = 10 cm ,然后提出一个问题:将△ AC ' D 沿着射线 DB 方向平移 acm ,得到△ A ' C ' D ' ,连接 BD ' CC ' ,使四边形 BCC ' D 恰好为正方形,求 a 的值,请你解答此问题;

(4)请你参照以上操作,将图1中的 ΔACD 在同一平面内进行一次平移,得到△ A ' C ' D ,在图4中画出平移后构造出的新图形,标明字母,说明平移及构图方法,写出你发现的结论,不必证明.

来源:2016年山西省中考数学试卷
  • 更新:2020-12-30
  • 题型:未知
  • 难度:未知

(1)计算:

(2)如图,四边形中,,对角线相交于点,且.求证:四边形是矩形.

来源:2019年江西省中考数学试卷
  • 更新:2020-12-29
  • 题型:未知
  • 难度:未知

问题发现

(1)如图(1),四边形 ABCD 中,若 AB = AD CB = CD ,则线段 BD AC 的位置关系为    

拓展探究

(2)如图(2),在 Rt Δ ABC 中,点 F 为斜边 BC 的中点,分别以 AB AC 为底边,在 Rt Δ ABC 外部作等腰三角形 ABD 和等腰三角形 ACE ,连接 FD FE ,分别交 AB AC 于点 M N ,试猜想四边形 FMAN 的形状,并说明理由;

解决问题

(3)如图(3),在正方形 ABCD 中, AB = 2 2 ,以点 A 为旋转中心将正方形 ABCD 旋转 60 ° ,得到正方形 AB ' C ' D ' ,请直接写出 BD ' 的长度.

来源:2016年河南省中考数学试卷(备用卷)
  • 更新:2021-01-02
  • 题型:未知
  • 难度:未知

如图①,在中,,过上一点于点,以为顶点,为一边,作,另一边于点

(1)求证:四边形为平行四边形;

(2)当点中点时,的形状为  

(3)延长图①中的到点,使,连接,得到图②,若,判断四边形的形状,并说明理由.

来源:2018年吉林省中考数学试卷
  • 更新:2021-01-03
  • 题型:未知
  • 难度:未知

如图,菱形的对角线相交于点,且.求证:四边形是矩形.

来源:2016年吉林省中考数学试卷
  • 更新:2021-01-03
  • 题型:未知
  • 难度:未知

(年云南省曲靖市)如图,菱形ABCD的对角线AC与BD相交于点O,且BE∥AC,CE∥BD.

(1)求证:四边形OBEC是矩形;
(2)若菱形ABCD的周长是,tanα=,求四边形OBEC的面积.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(年江西省南昌市)(1)如图1,纸片□ABCD中,AD=5,S□ABCD=15,过点A作AE⊥BC,垂足为E,沿AE剪下△ABE,将它平移至△DCE′ 的位置,拼成四边形AEE′D,则四边形AEE′D的形状为(    )
A.平行四边形          B.菱形          C.矩形          D.正方形
(2)如图2,在(1)中的四边形纸片AEE′D中,在EE′上取一点F,使EF=4,剪下△AEF,将它平移至△DE′F′ 的位置,拼成四边形AFF′D.
① 求证四边形AFF′D是菱形;
② 求四边形AFF′D两条对角线的长.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

初中数学矩形的判定解答题