如图, 是 的直径, , 是 上的点,且 , 分别与 , 相交于点 , ,则下列结论:
① ;② ;③ 平分 ;④ ;⑤ ;⑥ ,其中一定成立的是
A.②④⑤⑥B.①③⑤⑥C.②③④⑥D.①③④⑤
如图,在 中, , 于点 , 是 上一点,以 为直径的 交 于点 ,连接 ,且 .
(1)求证: 是 的切线;
(2)若 , ,求 的长.
如图,菱形 的对角线 、 相交于点 , 、 分别为边 、 的中点,连接 .若 , ,则菱形的周长为 .
菱形 的对角线 , 相交于点 , , 分别是 , 边上的中点,连接 .若 , ,则菱形 的面积为
A. |
|
B. |
|
C. |
|
D. |
|
(探索发现)
如图①,是一张直角三角形纸片, ,小明想从中剪出一个以 为内角且面积最大的矩形,经过多次操作发现,当沿着中位线 、 剪下时,所得的矩形的面积最大,随后,他通过证明验证了其正确性,并得出:矩形的最大面积与原三角形面积的比值为 .
(拓展应用)
如图②,在 中, , 边上的高 ,矩形 的顶点 、 分别在边 、 上,顶点 、 在边 上,则矩形 面积的最大值为 .(用含 , 的代数式表示)
(灵活应用)
如图③,有一块“缺角矩形” , , , , ,小明从中剪出了一个面积最大的矩形( 为所剪出矩形的内角),求该矩形的面积.
(实际应用)
如图④,现有一块四边形的木板余料 ,经测量 , , ,且 ,木匠徐师傅从这块余料中裁出了顶点 、 在边 上且面积最大的矩形 ,求该矩形的面积.
如图1,在四边形 中,如果对角线 和 相交并且相等,那么我们把这样的四边形称为等角线四边形.
(1)①在“平行四边形、矩形、菱形”中, 一定是等角线四边形(填写图形名称);
②若 、 、 、 分别是等角线四边形 四边 、 、 、 的中点,当对角线 、 还要满足 时,四边形 是正方形.
(2)如图2,已知 中, , , , 为平面内一点.
①若四边形 是等角线四边形,且 ,则四边形 的面积是 ;
②设点 是以 为圆心,1为半径的圆上的动点,若四边形 是等角线四边形,写出四边形 面积的最大值,并说明理由.