初中数学

如图, AB O 的直径, C D O 上的点,且 OC / / BD AD 分别与 BC OC 相交于点 E F ,则下列结论:

AD BD ;② AOC = AEC ;③ BC 平分 ABD ;④ AF = DF ;⑤ BD = 2 OF ;⑥ ΔCEF ΔBED ,其中一定成立的是 (    )

A.②④⑤⑥B.①③⑤⑥C.②③④⑥D.①③④⑤

来源:2016年山东省滨州市中考数学试卷
  • 更新:2021-05-14
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = AC AD BC 于点 D E AB 上一点,以 CE 为直径的 O BC 于点 F ,连接 DO ,且 DOC = 90 °

(1)求证: AB O 的切线;

(2)若 DF = 2 DC = 6 ,求 BE 的长.

来源:2017年辽宁省丹东市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

如图,菱形 ABCD 的对角线 AC BD 相交于点 O M N 分别为边 AB BC 的中点,连接 MN .若 MN = 1 BD = 2 3 ,则菱形的周长为  

来源:2017年辽宁省丹东市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

ΔABC 中, AB = 6 ,点 D AB 的中点,过点 D DE / / BC ,交 AC 于点 E ,点 M DE 上,且 ME = 1 3 DM .当 AM BM 时,则 BC 的长为             

来源:2017年宁夏中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

菱形 ABCD 的对角线 AC BD 相交于点 O E F 分别是 AD CD 边上的中点,连接 EF .若 EF = 2 BD = 2 ,则菱形 ABCD 的面积为 (    )

A.

2 2

B.

2

C.

6 2

D.

8 2

来源:2016年宁夏中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

如图, Rt Δ ABC 中, ACB = 90 ° AB = 6 ,点 D AB 的中点,过 AC 的中点 E EF / / CD AB 于点 F ,则 EF =       

来源:2017年江苏省镇江市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

(探索发现)

如图①,是一张直角三角形纸片, B = 90 ° ,小明想从中剪出一个以 B 为内角且面积最大的矩形,经过多次操作发现,当沿着中位线 DE EF 剪下时,所得的矩形的面积最大,随后,他通过证明验证了其正确性,并得出:矩形的最大面积与原三角形面积的比值为       

(拓展应用)

如图②,在 ΔABC 中, BC = a BC 边上的高 AD = h ,矩形 PQMN 的顶点 P N 分别在边 AB AC 上,顶点 Q M 在边 BC 上,则矩形 PQMN 面积的最大值为      .(用含 a h 的代数式表示)

(灵活应用)

如图③,有一块“缺角矩形” ABCDE AB = 32 BC = 40 AE = 20 CD = 16 ,小明从中剪出了一个面积最大的矩形( B 为所剪出矩形的内角),求该矩形的面积.

(实际应用)

如图④,现有一块四边形的木板余料 ABCD ,经测量 AB = 50 cm BC = 108 cm CD = 60 cm ,且 tan B = tan C = 4 3 ,木匠徐师傅从这块余料中裁出了顶点 M N 在边 BC 上且面积最大的矩形 PQMN ,求该矩形的面积.

来源:2017年江苏省盐城市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

ΔABC 中,点 D E 分别是 AB AC 的中点, DE = 7 ,则 BC =         

来源:2017年江苏省徐州市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, ACB = 90 ° ,点 D E F 分别是 AB BC CA 的中点,若 CD = 2 ,则线段 EF 的长是      

来源:2017年江苏省宿迁市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

如图所示, DE ΔABC 的中位线,若 BC = 8 ,则 DE =        

来源:2017年江苏省南通市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, ACB = 90 ° ,点 D E 分别是 AB AC 的中点,点 F AD 的中点.若 AB = 8 ,则 EF =         

来源:2017年江苏省淮安市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

如图1,在四边形 ABCD 中,如果对角线 AC BD 相交并且相等,那么我们把这样的四边形称为等角线四边形.

(1)①在“平行四边形、矩形、菱形”中,      一定是等角线四边形(填写图形名称);

②若 M N P Q 分别是等角线四边形 ABCD 四边 AB BC CD DA 的中点,当对角线 AC BD 还要满足  时,四边形 MNPQ 是正方形.

(2)如图2,已知 ΔABC 中, ABC = 90 ° AB = 4 BC = 3 D 为平面内一点.

①若四边形 ABCD 是等角线四边形,且 AD = BD ,则四边形 ABCD 的面积是   

②设点 E 是以 C 为圆心,1为半径的圆上的动点,若四边形 ABED 是等角线四边形,写出四边形 ABED 面积的最大值,并说明理由.

来源:2017年江苏省常州市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

如图, ΔABC 中, D E 分别为 AB AC 的中点,则 ΔADE ΔABC 的面积比为        

来源:2016年江苏省徐州市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

如图, AB CD 相交于点 O OC = 2 OD = 3 AC / / BD EF ΔODB 的中位线,且 EF = 2 ,则 AC 的长为  

来源:2016年江苏省南京市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,直线 y = kx + 4 ( k 0 ) x 轴于点 A ( 8 , 0 ) ,交 y 轴于点 B

(1) k 的值是  

(2)点 C 是直线 AB 上的一个动点,点 D 和点 E 分别在 x 轴和 y 轴上.

①如图,点 E 为线段 OB 的中点,且四边形 OCED 是平行四边形时,求 OCED 的周长;

②当 CE 平行于 x 轴, CD 平行于 y 轴时,连接 DE ,若 ΔCDE 的面积为 33 4 ,请直接写出点 C 的坐标.

来源:2019年辽宁省沈阳市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

初中数学三角形中位线定理试题