初中数学

研究立体图形问题的基本思路是把立体图形问题转化为平面图形问题.

(1)阅读材料

立体图形中既不相交也不平行的两条直线所成的角,就是将直线平移使其相交所成的角.

例如,正方体 ABCD A ' B ' C ' D ' (图 1 ) ,因为在平面 AA ' C ' C 中, CC ' / / A A ' AA ' AB 相交于点 A ,所以直线 AB AA ' 所成的 BAA ' 就是既不相交也不平行的两条直线 AB CC ' 所成的角.

解决问题

如图1,已知正方体 ABCD A ' B ' C ' D ' ,求既不相交也不平行的两直线 BA ' AC 所成角的大小.

(2)如图2, M N 是正方体相邻两个面上的点;

①下列甲、乙、丙三个图形中,只有一个图形可以作为图2的展开图,这个图形是   

②在所选正确展开图中,若点 M AB BC 的距离分别是2和5,点 N BD BC 的距离分别是4和3, P AB 上一动点,求 PM + PN 的最小值.

来源:2021年山东省济宁市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图,沿 AC 方向开山修路.为了加快施工进度,要在小山的另一边同时施工,从 AC 上的一点 B ABD = 120 ° BD = 520 m D = 30 ° .那么另一边开挖点 E D 多远正好使 A C E 三点在一直线上 ( 3 取1.732,结果取整数)?

来源:2018年江苏省南通市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

数和形是数学的两个主要研究对象,我们经常运用数形结合、数形转化的方法解决一些数学问题.下面我们来探究“由数思形,以形助数”的方法在解决代数问题中的应用.

探究一:求不等式 | x 1 | < 2 的解集

(1)探究 | x 1 | 的几何意义

如图①,在以 O 为原点的数轴上,设点 A ' 对应的数是 x 1 ,由绝对值的定义可知,点 A ' 与点 O 的距离为 | x 1 | ,可记为 A ' O = | x 1 | .将线段 A ' O 向右平移1个单位得到线段 AB ,此时点 A 对应的数是 x ,点 B 对应的数是1.因为 AB = A ' O ,所以 AB = | x 1 | .因此, | x 1 | 的几何意义可以理解为数轴上 x 所对应的点 A 与1所对应的点 B 之间的距离 AB

(2)求方程 | x 1 | = 2 的解

因为数轴上3和 1 所对应的点与1所对应的点之间的距离都为2,所以方程的解为3, 1

(3)求不等式 | x 1 | < 2 的解集

因为 | x 1 | 表示数轴上 x 所对应的点与1所对应的点之间的距离,所以求不等式解集就转化为求这个距离小于2的点对应的数 x 的范围.

请在图②的数轴上表示 | x 1 | < 2 的解集,并写出这个解集.

探究二:探究 ( x a ) 2 + ( y b ) 2 的几何意义

(1)探究 x 2 + y 2 的几何意义

如图③,在直角坐标系中,设点 M 的坐标为 ( x , y ) ,过 M MP x 轴于 P ,作 MQ y 轴于 Q ,则 P 点坐标为 ( x , 0 ) Q 点坐标为 ( 0 , y ) OP = | x | OQ = | y | ,在 Rt Δ OPM 中, PM = OQ = | y | ,则 MO = O P 2 + P M 2 = | x | 2 + | y | 2 = x 2 + y 2 ,因此, x 2 + y 2 的几何意义可以理解为点 M ( x , y ) 与点 O ( 0 , 0 ) 之间的距离 MO

(2)探究 ( x 1 ) 2 + ( y 5 ) 2 的几何意义

如图④,在直角坐标系中,设点 A ' 的坐标为 ( x 1 , y 5 ) ,由探究二(1)可知, A ' O = ( x 1 ) 2 + ( y 5 ) 2 ,将线段 A ' O 先向右平移1个单位,再向上平移5个单位,得到线段 AB ,此时点 A 的坐标为 ( x , y ) ,点 B 的坐标为 ( 1 , 5 ) ,因为 AB = A ' O ,所以 AB = ( x 1 ) 2 + ( y 5 ) 2 ,因此 ( x 1 ) 2 + ( y 5 ) 2 的几何意义可以理解为点 A ( x , y ) 与点 B ( 1 , 5 ) 之间的距离 AB

(3)探究 ( x + 3 ) 2 + ( y 4 ) 2 的几何意义

请仿照探究二(2)的方法,在图⑤中画出图形,并写出探究过程.

(4) ( x a ) 2 + ( y b ) 2 的几何意义可以理解为:  

拓展应用:

(1) ( x 2 ) 2 + ( y + 1 ) 2 + ( x + 1 ) 2 + ( y + 5 ) 2 的几何意义可以理解为:点 A ( x , y ) 与点 E ( 2 , 1 ) 的距离和点 A ( x , y ) 与点 F   (填写坐标)的距离之和.

(2) ( x 2 ) 2 + ( y + 1 ) 2 + ( x + 1 ) 2 + ( y + 5 ) 2 的最小值为  (直接写出结果)

来源:2017年山东省青岛市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

在△ABC中, AB 15 BC 14 AC 13 ,求△ABC的面积.

某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完成解答过程.

来源:2016年湖南省益阳市中考数学试卷
  • 更新:2021-04-15
  • 题型:未知
  • 难度:未知

中国对南沙群岛及其附近海域拥有无可争辩的主权。2015年10月27日,美国拉森号军舰未经中国政府允许,非法进入中国南沙群岛有关岛礁邻近海域。中国海军盐城舰加大南沙海域的巡航维权力度.如图,OA⊥OB,OA=45海里,OB=15海里,渚碧礁位于点,盐城舰在点B处发现美国拉森号军舰,自A点出发沿着AO方向匀速驶向渚碧礁所在地点,盐城舰立即从B处出发以相同的速度沿某直线去拦截拉森号军舰,结果在点C处截住了拉森号军舰.

(1)请用直尺和圆规作出C处的位置;
(2)求盐城舰行驶的航程BC的长.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

有一块薄铁皮ABCD,∠B=90°,各边的尺寸如图所示,若对角线AC剪开,得到的两块都是“直角三角形”形状吗?为什么?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图:网格中的每一个小正方形的边长是1,在这个网格中画一个钝角,使.(注:点C必须在格点上)

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,修公路遇到一座山,于是要修一条隧道.为了加快施工进度,想在小山的另一侧同时施工.为了使山的另一侧的开挖点C在AB的延长线上,设想过C点作直线AB的垂线l,过点B作一直线(在山的旁边经过),与相交于D点,经测量∠ABD=135°,BD=800米,求直线上距离D点多远的C处开挖?(≈1.414,精确到1米)

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

在一次消防演习中,消防员架起一架25米长的云梯,如图斜靠在一面墙上,梯子底端离墙7米.

(1)求这个梯子的顶端距地面有多高?
(2)如果消防员接到命令,要求梯子的顶端下降4米(云梯长度不变),那么云梯的底部在水平方向应滑动多少米?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

初中数学勾股定理的应用解答题