如图1,分别以直角三角形三边为边向外作等边三角形,面积分别为 、 、 ;如图2,分别以直角三角形三个顶点为圆心,三边长为半径向外作圆心角相等的扇形,面积分别为 、 、 .其中 , , , ,则
A.86B.64C.54D.48
如图,边长为4的等边 , 边在 轴上,点 在 轴的正半轴上,以 为边作等边 ,边 与 交于点 ,以 为边作等边△ ,边 与 交于点 ,以 为边作等边△ ,边 与 交于点 , ,依此规律继续作等边△ ,记△ 的面积为 ,△ 的面积为 ,△ 的面积为 , ,△ 的面积为 ,则 . ,且 为整数)
如图,在平面直角坐标系中,等边 和菱形 的边 , 都在 轴上,点 在 边上, ,反比例函数 的图象经过点 ,则 的值为 .
如图, 是等边三角形, ,点 是边 上一点,点 是线段 上一点,连接 、 .当 , 时, .
如图,等边三角形 的边长为1,顶点 与原点 重合,点 在 轴的正半轴上,过点 作 于点 ,过点 作 ,交 于点 ;过点 作 于点 ,过点 作 ,交 于点 ; ,按此规律进行下去,点 的坐标是 .
如图, ,点 在边 上,且 ,过点 作 交 于点 ,以 为边在 右侧作等边三角形 ;过点 作 的垂线分别交 、 于点 、 ,以 为边在 的右侧作等边三角形 ;过点 作 的垂线分别交 、 于点 、 ,以 为边在 的右侧作等边三角形 , ;按此规律进行下去,则△ 的面积为 .(用含正整数 的代数式表示)
菱形 中、 ,点 为射线 上的动点,作射线 与直线 相交于点 ,将射线 绕点 逆时针旋转 ,得到射线 ,射线 与直线 相交于点 .
(1)如图①,点 与点 重合时,点 , 分别在线段 , 上,请直接写出 , , 三条段段之间的数量关系;
(2)如图②,点 在 的延长线上,且 , , 分别在线段 的延长线和线段 的延长线上,请写出 , , 三条线段之间的数量关系,并说明理由;
(3)点 在线段 上,若 , ,当 时,请直接写出 的长.
如图,在正方形 中,点 , 分别在 , 上, , 与 相交于点 .下列结论:① 垂直平分 ;② ;③当 时, 为等边三角形;④当 时, .其中正确的是
A.①③B.②④C.①③④D.②③④
如图,在等边三角形 中, , 与 相交于点 , 于点 ,若 ,则 的长为
A. B. C. D.4
如图,在 中, , ,以线段 为边向外作等边 ,点 是线段 的中点,连接 并延长交线段 于点 .
(1)求证:四边形 为平行四边形;
(2)若 ,求平行四边形 的面积.
如图,已知 是等边三角形 的外接圆,点 在圆上,在 的延长线上有一点 ,使 , 交 于 .
(1)求证: 是 的切线;
(2)求证: .
问题背景:已知 的顶点 在 的边 所在直线上(不与 , 重合), 交 所在直线于点 , 交 所在直线于点 ,记 的面积为 , 的面积为 .
(1)初步尝试:如图①,当 是等边三角形, , ,且 , 时,则 ;
(2)类比探究:在(1)的条件下,先将点 沿 平移,使 ,再将 绕点 旋转至如图②所示位置,求 的值;
(3)延伸拓展:当 是等腰三角形时,设 .
(Ⅰ)如图③,当点 在线段 上运动时,设 , ,求 的表达式(结果用 , 和 的三角函数表示).
(Ⅱ)如图④,当点 在 的延长线上运动时,设 , ,直接写出 的表达式,不必写出解答过程.