初中数学

如图,在菱形 ABCD 中, ABC = 120 ° AB = 10 cm ,点 P 是这个菱形内部或边上的一点.若以 P B C 为顶点的三角形是等腰三角形,则 P A ( P A 两点不重合)两点间的最短距离为   cm

来源:2017年湖南省怀化市中考数学试卷
  • 更新:2021-05-07
  • 题型:未知
  • 难度:未知

经过三边都不相等的三角形的一个顶点的线段把三角形分成两个小三角形,如果其中一个是等腰三角形,另外一个三角形和原三角形相似,那么把这条线段定义为原三角形的“和谐分割线”.如图,线段 CD ΔABC 的“和谐分割线”, ΔACD 为等腰三角形, ΔCBD ΔABC 相似, A = 46 ° ,则 ACB 的度数为  

来源:2017年黑龙江省大兴安岭中考数学试卷
  • 更新:2021-04-29
  • 题型:未知
  • 难度:未知

如图,已知在 ΔABC 中, BC 边上的高 AD AC 边上的高 BE 交于点 F ,且 BAC = 45 ° BD = 6 CD = 4 ,则 ΔABC 的面积为  

来源:2018年贵州省黔东南州中考数学试卷
  • 更新:2021-04-29
  • 题型:未知
  • 难度:未知

阅读下面的例题及点拨,并解决问题:

例题:如图①,在等边 ΔABC 中, M BC 边上一点(不含端点 B C ) N ΔABC 的外角 ACH 的平分线上一点,且 AM = MN .求证: AMN = 60 °

点拨:如图②,作 CBE = 60 ° BE NC 的延长线相交于点 E ,得等边 ΔBEC ,连接 EM .易证: ΔABM ΔEBM ( SAS ) ,可得 AM = EM 1 = 2 ;又 AM = MN ,则 EM = MN ,可得 3 = 4 ;由 3 + 1 = 4 + 5 = 60 ° ,进一步可得 1 = 2 = 5 ,又因为 2 + 6 = 120 ° ,所以 5 + 6 = 120 ° ,即: AMN = 60 °

问题:如图③,在正方形 A 1 B 1 C 1 D 1 中, M 1 B 1 C 1 边上一点(不含端点 B 1 C 1 ) N 1 是正方形 A 1 B 1 C 1 D 1 的外角 D 1 C 1 H 1 的平分线上一点,且 A 1 M 1 = M 1 N 1 .求证: A 1 M 1 N 1 = 90 °

来源:2019年甘肃省临夏州中考数学试卷
  • 更新:2021-04-27
  • 题型:未知
  • 难度:未知

如图, ΔABC AB = AC = 4 C = 72 ° D AB 中点,点 E AC 上, DE AB ,则 cos A 的值为 (    )

A. 5 1 2 B. 5 1 4 C. 5 + 1 4 D. 5 + 1 2

来源:2016年四川省绵阳市中考数学试卷
  • 更新:2021-04-23
  • 题型:未知
  • 难度:未知

已知:如图,四边形 ABCD 是平行四边形,延长 BA 至点 E ,使 AE + CD = AD .连接 CE ,求证: CE 平分 BCD

来源:2016年四川省巴中市中考数学试卷
  • 更新:2021-04-20
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, BD 平分 ABC ED / / BC ,已知 AB = 3 AD = 1 ,则 ΔAED 的周长为 (    )

A.2B.3C.4D.5

来源:2016年四川省阿坝州中考数学试卷
  • 更新:2021-04-20
  • 题型:未知
  • 难度:未知

在▱ABCD中, AD 8 AE平分 BAD BC于点EDF平分∠ADCBC于点F,且 EF 2 ,则AB的长为(  )

A.3B.5C.2或3D.3或5

来源:2016年湖北省孝感市中考数学试卷
  • 更新:2021-04-16
  • 题型:未知
  • 难度:未知

如图,在四边形 ABCD中,∠ B=∠ C=90°, ABCDADAB+ CD

(1)利用尺规作∠ ADC的平分线 DE,交 BC于点 E,连接 AE(保留作图痕迹,不写作法);

(2)在(1)的条件下,

①证明: AEDE

②若 CD=2, AB=4,点 MN分别是 AEAB上的动点,求 BM+ MN的最小值.

来源:2018年广东省广州市中考数学试卷
  • 更新:2021-04-13
  • 题型:未知
  • 难度:未知

在▱ ABCD中, AE平分∠ BAD交边 BCEDF平分∠ ADC交边 BCF,若 AD=11, EF=5,则 AB  

来源:2017年内蒙古通辽市中考数学试卷
  • 更新:2021-03-22
  • 题型:未知
  • 难度:未知

如图,在Rt△ ABC中,∠ ACB=90°, CDAB,垂足为 DAF平分∠ CAB,交 CD于点 E,交 CB于点 F.若 AC=3, AB=5,则 CE的长为(  )

A.

3 2

B.

4 3

C.

5 3

D.

8 5

来源:2017年内蒙古包头市中考数学试卷
  • 更新:2021-03-22
  • 题型:未知
  • 难度:未知

如图,是等边三角形,平分,点的延长线上,且,则  

来源:2016年福建省龙岩市中考数学试卷
  • 更新:2021-03-12
  • 题型:未知
  • 难度:未知

如图,已知线段 ,分别以 为圆心,大于 1 2 AB为半径作弧,连接弧的交点得到直线 ,在直线 上取一点 ,使得 ,延长 ,求 的度数为   

A.

B.

C.

D.

来源:2017年广东省深圳市中考数学试卷
  • 更新:2021-03-05
  • 题型:未知
  • 难度:未知

如图,在平行四边形ABCD中,∠ABC的平分线交ADE,∠BED=150°,则∠A的大小为(  )

A.150°B.130°C.120°D.100°

来源:2016年广西河池市中考数学试卷
  • 更新:2021-03-05
  • 题型:未知
  • 难度:未知

(1)【操作发现】

如图1,在边长为1个单位长度的小正方形组成的网格中, ΔABC 的三个顶点均在格点上.

①请按要求画图:将 ΔABC 绕点 A 顺时针方向旋转 90 ° ,点 B 的对应点为点 B ' ,点 C 的对应点为点 C ' .连接 BB '

②在①中所画图形中, AB ' B =     °

(2)【问题解决】

如图2,在 Rt Δ ABC 中, BC = 1 C = 90 ° ,延长 CA D ,使 CD = 1 ,将斜边 AB 绕点 A 顺时针旋转 90 ° AE ,连接 DE ,求 ADE 的度数.

(3)【拓展延伸】

如图3,在四边形 ABCD 中, AE BC ,垂足为 E BAE = ADC BE = CE = 1 CD = 3 AD = kAB ( k 为常数),求 BD 的长(用含 k 的式子表示).

来源:2020年内蒙古鄂尔多斯市中考数学试卷
  • 更新:2021-01-17
  • 题型:未知
  • 难度:未知

初中数学等腰三角形的判定与性质试题