初中数学

在正方形 ABCD 中,对角线 BD 所在的直线上有两点 E F 满足 BE = DF ,连接 AE AF CE CF ,如图所示.

(1)求证: ΔABE ΔADF

(2)试判断四边形 AECF 的形状,并说明理由.

来源:2018年江苏省盐城市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD 中, AD = 4 ,点 E 在边 AD 上,连接 CE ,以 CE 为边向右上方作正方形 CEFG ,作 FH AD ,垂足为 H ,连接 AF

(1)求证: FH = ED

(2)当 AE 为何值时, ΔAEF 的面积最大?

来源:2018年江苏省徐州市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

如图,平行四边形 ABCD 中, E F 分别是边 BC AD 的中点,求证: ABF = CDE

来源:2018年江苏省无锡市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

如图,已知五边形 ABCDE 是正五边形,连接 AC AD .证明: ACD = ADC

来源:2018年江苏省无锡市中考数学试卷(副卷)
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

对给定的一张矩形纸片 ABCD 进行如下操作:先沿 CE 折叠,使点 B 落在 CD 边上(如图① ) ,再沿 CH 折叠,这时发现点 E 恰好与点 D 重合(如图② )

(1)根据以上操作和发现,求 CD AD 的值;

(2)将该矩形纸片展开.

①如图③,折叠该矩形纸片,使点 C 与点 H 重合,折痕与 AB 相交于点 P ,再将该矩形纸片展开.求证: HPC = 90 °

②不借助工具,利用图④探索一种新的折叠方法,找出与图③中位置相同的 P 点,要求只有一条折痕,且点 P 在折痕上,请简要说明折叠方法.(不需说明理由)

来源:2018年江苏省泰州市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

如图, A = D = 90 ° AC = DB AC DB 相交于点 O .求证: OB = OC

来源:2018年江苏省泰州市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

如图, AB AC 分别是 O 的直径和弦, OD AC 于点 D .过点 A O 的切线与 OD 的延长线交于点 P PC AB 的延长线交于点 F

(1)求证: PC O 的切线;

(2)若 ABC = 60 ° AB = 10 ,求线段 CF 的长.

来源:2018年江苏省宿迁市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

如图,在 ABCD 中,点 E F 分别在边 CB AD 的延长线上,且 BE = DF EF 分别与 AB CD 交于点 G H .求证: AG = CH

来源:2018年江苏省宿迁市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

如图, AB O 的直径,点 C O 上, AD 垂直于过点 C 的切线,垂足为 D CE 垂直 AB ,垂足为 E .延长 DA O 于点 F ,连接 FC FC AB 相交于点 G ,连接 OC

(1)求证: CD = CE

(2)若 AE = GE ,求证: ΔCEO 是等腰直角三角形.

来源:2018年江苏省苏州市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

如图,点 A F C D 在一条直线上, AB / / DE AB = DE AF = DC .求证: BC / / EF

来源:2018年江苏省苏州市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

如图,正方形 ABCD 中, AB = 2 5 O BC 边的中点,点 E 是正方形内一动点, OE = 2 ,连接 DE ,将线段 DE 绕点 D 逆时针旋转 90 ° DF ,连接 AE CF

(1)求证: AE = CF

(2)若 A E O 三点共线,连接 OF ,求线段 OF 的长.

(3)求线段 OF 长的最小值.

来源:2018年江苏省南通市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

如图,在四边形 ABCD 中, BC = CD C = 2 BAD O 是四边形 ABCD 内一点,且 OA = OB = OD .求证:

(1) BOD = C

(2)四边形 OBCD 是菱形.

来源:2018年江苏省南京市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

如图,矩形 ABCD 中, E AD 的中点,延长 CE BA 交于点 F ,连接 AC DF

(1)求证:四边形 ACDF 是平行四边形;

(2)当 CF 平分 BCD 时,写出 BC CD 的数量关系,并说明理由.

来源:2018年江苏省连云港市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

已知:如图, ABCD 的对角线 AC BD 相交于点 O ,过点 O 的直线分别与 AD BC 相交于点 E F .求证: AE = CF

来源:2018年江苏省淮安市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,把 ΔABC 沿 BC 翻折得 ΔDBC

(1)连接 AD ,则 BC AD 的位置关系是  

(2)不在原图中添加字母和线段,只加一个条件使四边形 ABDC 是平行四边形,写出添加的条件,并说明理由.

来源:2018年江苏省常州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

初中数学全等三角形的判定与性质解答题