初中数学

图①、图②、图③均是的正方形网格,每个小正方形的顶点称为格点,小正方形的边长为1,点均在格点上.在图①、图②、图③中,只用无刻度的直尺,在给定的网格中按要求画图,所画图形的顶点均在格点上,不要求写出画法.

(1)在图①中以线段为边画一个,使其面积为6.

(2)在图②中以线段为边画一个,使其面积为6.

(3)在图③中以线段为边画一个四边形,使其面积为9,且

来源:2019年吉林省长春市中考数学试卷
  • 更新:2021-01-04
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,直线与函数的图象交于点.过点平行于轴交轴于点,在轴负半轴上取一点,使,且的面积是6,连接

(1)求的值;

(2)求的面积.

来源:2017年吉林省中考数学试卷
  • 更新:2021-01-03
  • 题型:未知
  • 难度:未知

(1)如图1,在中,,以点为中心,把逆时针旋转,得到△;再以点为中心,把顺时针旋转,得到△,连接,则的位置关系为  

(2)如图2,当是锐角三角形,时,将按照(1)中的方式旋转,连接,探究的位置关系,写出你的探究结论,并加以证明;

(3)如图3,在图2的基础上,连接,若,△的面积为4,则△的面积为  

来源:2016年吉林省中考数学试卷
  • 更新:2021-01-03
  • 题型:未知
  • 难度:未知

数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所得两长方形面积相等(如图所示)”这一推论,他从这一推论出发,利用“出入相补”原理复原了《海岛算经》九题古证.

(以上材料来源于《古证复原的原理》、《吴文俊与中国数学》和《古代世界数学泰斗刘徽》

请根据该图完成这个推论的证明过程.

证明:    

易知,        

可得

来源:2017年北京市中考数学试卷
  • 更新:2021-01-04
  • 题型:未知
  • 难度:未知

如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,CD⊥AB于点D.点P从点D出发,沿线段DC向点C运动,点Q从点C出发,沿线段CA向点A运动,两点同时出发,速度都为每秒1个单位长度,当点P运动到C时,两点都停止.设运动时间为t秒.

(1)求线段CD的长;
(2)当t为何值时,△CPQ与△ABC相似?
(3)当t为何值时,△CPQ为等腰三角形?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知关于x的方程x2-(m+2)x+(2m-1)=0的一个根是2,请求出方程的另一个根,并求以此两根为边长的直角三角形的面积。

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

初中数学三角形的面积解答题