数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所得两长方形面积相等(如图所示)”这一推论,他从这一推论出发,利用“出入相补”原理复原了《海岛算经》九题古证.
(以上材料来源于《古证复原的原理》、《吴文俊与中国数学》和《古代世界数学泰斗刘徽》)
请根据该图完成这个推论的证明过程.
证明:S矩形NFGD=SΔADC-SΔANF+SΔFGC,S矩形EBMF=SΔABC-( + ).
易知,SΔADC=SΔABC, = , = .
可得S矩形NFGD=S矩形EBMF.
有两个熟练工人甲和乙,他们每小时制作零件a件、b件.现要赶制一批零件,若甲单独完成需要m小时.如果甲、乙两人同时工作,那么比甲单独完成任务提前多长时间?
如图是一次函数的图象,请根据给出的图象写出一个一元一次方程和一元一次不等式,并用图象求解所写的方程和不等式.
下面是解分式方程的过程,阅读完后请填空. 解方程:. 解:方程两边都乘以,得 960 - 600=90, 解这个方程,得. 经检验,是原方程的根. 第一步计算中的是: ;这个步骤用到的依据是 ; 解方式方程与解一元一次方程之间的联系是: .
如图,已知抛物线y=-x2+bx+c与一直线相交于A(-1,0),C(2,3)两点,与y轴交于点N.其顶点为D. (1)抛物线及直线AC的函数关系式; (2)设点M(3,m),求使MN+MD的值最小时m的值; (3)若抛物线的对称轴与直线AC相交于点B,E为直线AC上的任意一点,过点E作EF∥BD交抛物线于点F,以B,D,E,F为顶点的四边形能否为平行四边形?若能,求点E的坐标;若不能,请说明理由; (4)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值.
如图:三角形ABC内接于圆O,∠BAC与∠ABC的角平分线AE,BE相交于点E,延长AE交外接圆O于点D,连接BD,DC,且∠BCA=60° (1)求∠BED的大小; (2)证明:△BED为等边三角形; (3)若∠ADC=30°,圆O的半径为r,求等边三角形BED的边长.