如图,一次函数 y = kx + 2 的图象与反比例函数 y = m x 的图象交于 P 、 G 两点,过点 P 作 PA ⊥ x 轴,一次函数图象分别交 x 轴、 y 轴于 C 、 D 两点, CD CP = 1 2 ,且 S ΔADP = 6 .
(1)求点 D 坐标;
(2)求一次函数和反比例函数的表达式;
(3)根据图象直接写出一次函数值小于反比例函数值时,自变量 x 的取值范围.
(贵港)已知:△ABC是等腰三角形,动点P在斜边AB所在的直线上,以PC为直角边作等腰三角形PCQ,其中∠PCQ=90°,探究并解决下列问题: (1)如图①,若点P在线段AB上,且AC=,PA=,则:①线段PB= ,PC= ; ②猜想:,,三者之间的数量关系为 ; (2)如图②,若点P在AB的延长线上,在(1)中所猜想的结论仍然成立,请你利用图②给出证明过程; (3)若动点P满足,求的值.(提示:请利用备用图进行探求)
(贵港)(1)计算:; (2)解不等式组,并在数轴上表示不等式组的解集.
(崇左)如图,点D在AB上,点E在AC上,AB=AC,AD=AE.求证:BE=CD.
(崇左)计算:.
(北海)如图1所示,已知抛物线的顶点为D,与x轴交于A、B两点,与y轴交于C点,E为对称轴上的一点,连接CE,将线段CE绕点E按逆时针方向旋转90°后,点C的对应点C′恰好落在y轴上. (1)直接写出D点和E点的坐标; (2)点F为直线C′E与已知抛物线的一个交点,点H是抛物线上C与F之间的一个动点,若过点H作直线HG与y轴平行,且与直线C′E交于点G,设点H的横坐标为m(0<m<4),那么当m为何值时,=5:6? (3)图2所示的抛物线是由向右平移1个单位后得到的,点T(5,y)在抛物线上,点P是抛物线上O与T之间的任意一点,在线段OT上是否存在一点Q,使△PQT是等腰直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由.