如图,在▱ABCD中,AC为对角线,AC=BC=5,AB=6,AE是△ABC的中线.
(1)用无刻度的直尺画出△ABC的高CH(保留画图痕迹);
(2)求△ACE的面积.
如图, 中, , 为 的角平分线,以点 为圆心, 为半径作 与线段 交于点 .
(1)求证: 为 的切线;
(2)若 , ,求 的长.
如图,在 中, 的垂直平分线交 于点 , 平分 ,若 ,则 的度数为
A. |
|
B. |
|
C. |
|
D. |
|
如图,在等腰中,,是的角平分线,且,以点为圆心,长为半径画弧,交于点,交于点.
(1)求由弧及线段、、围成图形(图中阴影部分)的面积;
(2)将阴影部分剪掉,余下扇形,将扇形围成一个圆锥的侧面,与正好重合,圆锥侧面无重叠,求这个圆锥的高.
定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.
(1)如图1,在中,,是的角平分线,,分别是,上的点.
求证:四边形是邻余四边形.
(2)如图2,在的方格纸中,,在格点上,请画出一个符合条件的邻余四边形,使是邻余线,,在格点上.
(3)如图3,在(1)的条件下,取中点,连结并延长交于点,延长交于点.若为的中点,,,求邻余线的长.
请从以下两个小题中任选一个作答,若多选,则按第一题计分.
.如图,在中,和是的两条角平分线.若,则的度数为 .
.(结果精确到
如图,在 中, , , , 的高 与角平分线 交于点 ,则 的值为
A. |
|
B. |
|
C. |
|
D. |
|
如图,和中,,,,边与边交于点(不与点,重合),点,在异侧,为的内心.
(1)求证:;
(2)设,请用含的式子表示,并求的最大值;
(3)当时,的取值范围为,分别直接写出,的值.
如图,点D是△ABC的边BC上任意一点,点E、F分别是线段AD、CE的中点,且△ABC的面积为16cm2,则△BEF的面积: cm2.