在 中,已知 和 分别是边 、 上的中线,且 ,垂足为 .若 , ,则线段 的长度为 .
如图,在 中, 的角平分线交 于点 , , .
(1)试判断四边形 的形状,并说明理由;
(2)若 ,且 ,求四边形 的面积.
三角形的重心是
A.三角形三条边上中线的交点
B.三角形三条边上高线的交点
C.三角形三条边垂直平分线的交点
D.三角形三条内角平分线的交点
如图, 中, 是 边上的高, 、 分别是 、 的平分线, , ,则
A. B. C. D.
如图, 的面积是12,点 、 、 、 分别是 、 、 、 的中点,则 的面积是
A.4.5B.5C.5.5D.6
如图, 为 的直径,点 在 上.
(1)尺规作图:作 的平分线,与 交于点 ;连接 ,交 于点 (不写作法,只保留作图痕迹,且用黑色墨水笔将作图痕迹加黑);
(2)探究 与 的位置及数量关系,并证明你的结论.
如图,在 中,点 是边 的中点,连结 并延长到点 ,使 ,连结 .
(1)求证: ;
(2)若 的面积为5,求 的面积.
按要求作图,不要求写作法,但要保留作图痕迹.
(1)如图1, 为 上一点,请用直尺(不带刻度)和圆规作出 的内接正方形;
(2)我们知道,三角形具有性质:三边的垂直平分线相交于同一点,三条角平分线相交于一点,三条中线相交于一点,事实上,三角形还具有性质:三条高所在直线相交于一点.
请运用上述性质,只用直尺(不带刻度)作图.
①如图2,在 中, 为 的中点,作 的中点 .
②如图3,在由小正方形组成的 的网格中, 的顶点都在小正方形的顶点上,作 的高 .