如图是由边长相同的小正方形组成的网格, , , , 四点均在正方形网格的格点上,线段 , 相交于点 ,则图中 的正切值是
A. B.1C. D.2
如图, 的面积为16,点 是 边上一点,且 ,点 是 上一点,点 在 内部,且四边形 是平行四边形,则图中阴影部分的面积是
A.3B.4C.5D.6
如图,已知 是 的直径,半径 ,点 在劣弧 上(不与点 ,点 重合), 与 交于点 .设 , ,则
A. B. C. D.
如图,在 中, , , 为 延长线上一点, 与 的平分线相交于点 ,则 的度数为
A. B. C. D.
一个等腰三角形的边长是6,腰长是一元二次方程 的一根,则此三角形的周长是
A.12B.13C.14D.12或14
如图, 中, , , .点 为 内一点,且满足 .当 的长度最小时, 的面积是
A. |
3 |
B. |
|
C. |
|
D. |
|
如图,把含 的直角三角板 放置在正方形 中, ,直角顶点 在正方形 的对角线 上,点 , 分别在 和 边上, 与 交于点 ,且点 为 的中点,则 的度数为
A. |
|
B. |
|
C. |
|
D. |
|
如图,点 , , , 共线, , ,添加一个条件,不能判断 的是
A. |
|
B. |
|
C. |
|
D. |
|
如图,在 纸片中, , , ,点 , 分别在 , 上,连结 ,将 沿 翻折,使点 的对应点 落在 的延长线上,若 平分 ,则 的长为
A. |
|
B. |
|
C. |
|
D. |
|
如图是中国古代数学家赵爽用来证明勾股定理的弦图的示意图,它是由四个全等的直角三角形和一个小正方形 组成,恰好拼成一个大正方形 .连结 并延长交 于点 .若 , ,则 的长为
A. |
|
B. |
|
C. |
|
D. |
|
如图,在矩形 中,点 在 上,将矩形沿 折叠,使点 落在 边上的点 处.若 , ,则 的值为
A. B. C. D.
如图,等边三角形 边长是定值,点 是它的外心,过点 任意作一条直线分别交 , 于点 , .将 沿直线 折叠,得到△ ,若 , 分别交 于点 , ,连接 , ,则下列判断错误的是
A.
B.△ 的周长是一个定值
C.四边形 的面积是一个定值
D.四边形 的面积是一个定值