如图,在 中,按以下步骤作图:①分别以 、 为圆心,大于 长为半径作弧,两弧相交于 、 两点;②作直线 交 于 ,连接 .若 , ,则
A. B. C. D.
如图,数轴上点 对应的数为2, 于 ,且 ,以 为圆心, 长为半径作弧,交数轴于点 ,则 长为
A.3B. C. D.
已知 中, ,点 、 分别在 、 边上,连接 、 交于点 ,设 , , 为常数,试探究 的度数:
(1)如图1,若 ,则 的度数为 ;
(2)如图2,若 ,试问(1)中的结论是否成立?若成立,请说明理由;若不成立,求出 的度数.
(3)如图3,若 ,且 、 分别在 、 的延长线上,(2)中的结论是否成立,请说明理由.
如图,在 中, , , ,以点 为原点建立平面直角坐标系,使 在 轴正半轴上,点 是 边上的一个动点, 交 于 , 于 , 于 .以下结论:
① ;
②当 为 的中点时, ;
③点 的坐标为 ;
④将 沿 所在的直线翻折到原来的平面,点 的对应点 的坐标为 ;
⑤矩形 的最大面积为3.在这些结论中正确的有 (只填序号)
如图是一块圆环形玉片的残片,作外圆的弦 与内圆相切于点 ,量得 、点 与 的中点 的距离 .则此圆环形玉片的外圆半径为 .
如图,已知 是 的直径, 是 延长线上一点, 切 于点 , 是 的弦, ,垂足为 .
(1)求证: .
(2)过点 作 交 于点 ,交 于点 ,连接 ,若 , ,求 的长.
下面有4张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长都是1,请在方格纸中分别画出符合要求的图形,所画图形各顶点必须与方格纸中小正方形的顶点重合,具体要求如下:
(1)画一个直角边长为4,面积为6的直角三角形.
(2)画一个底边长为4,面积为8的等腰三角形.
(3)画一个面积为5的等腰直角三角形.
(4)画一个一边长为 ,面积为6的等腰三角形.
如图,四边形 是正方形, 为 上一点,连接 ,延长 至点 ,使得 ,过点 作 ,垂足为 ,求证: .
如图, 中, , ,点 , 分别在 , 上, ,点 为 的延长线与 的延长线的交点.
(1)求证: ;
(2)判断 和 的数量关系,并说明理由;
(3)若 , ,求 的长.