初中数学

关于二次函数 y = 2 ( x - 4 ) 2 + 6 的最大值或最小值,下列说法正确的是 (    )

A.

有最大值4

B.

有最小值4

C.

有最大值6

D.

有最小值6

来源:2021年浙江省绍兴市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

定义: min { a b } = a ( a b ) b ( a > b ) ,若函数 y = min ( x + 1 , - x 2 + 2 x + 3 ) ,则该函数的最大值为 (    )

A.

0

B.

2

C.

3

D.

4

来源:2021年四川省雅安市中考数学试卷
  • 更新:2021-08-15
  • 题型:未知
  • 难度:未知

某快递公司在甲地和乙地之间共设有29个服务驿站(包括甲站、乙站),一辆快递货车由甲站出发,依次途经各站驶往乙站,每停靠一站,均要卸下前面各站发往该站的货包各1个,又要装上该站发往后面各站的货包各1个.在整个行程中,快递货车装载的货包数量最多是   个.

来源:2020年山东省淄博市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

已知二次函数 y = x 2 ,当 a x b m y n ,则下列说法正确的是 (    )

A.当 n - m = 1 时, b - a 有最小值B.当 n - m = 1 时, b - a 有最大值

C.当 b - a = 1 时, n - m 无最小值D.当 b - a = 1 时, n - m 有最大值

来源:2020年浙江省嘉兴市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

将一个直角三角形纸片 OAB 放置在平面直角坐标系中,点 O ( 0 , 0 ) ,点 A ( 2 , 0 ) ,点 B 在第一象限, OAB = 90 ° B = 30 ° ,点 P 在边 OB 上(点 P 不与点 O B 重合).

(Ⅰ)如图①,当 OP = 1 时,求点 P 的坐标;

(Ⅱ)折叠该纸片,使折痕所在的直线经过点 P ,并与 x 轴的正半轴相交于点 Q ,且 OQ = OP ,点 O 的对应点为 O ' ,设 OP = t

①如图②,若折叠后△ O ' PQ ΔOAB 重叠部分为四边形, O ' P O ' Q 分别与边 AB 相交于点 C D ,试用含有 t 的式子表示 O ' D 的长,并直接写出 t 的取值范围;

②若折叠后△ O ' PQ ΔOAB 重叠部分的面积为 S ,当 1 t 3 时,求 S 的取值范围(直接写出结果即可).

来源:2020年天津市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

- 1 x 3 时,二次函数 y = x 2 - 4 x + 5 有最大值 m ,则 m =   

来源:2020年西藏中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

竖直上抛物体离地面的高度 h ( m ) 与运动时间 t ( s ) 之间的关系可以近似地用公式 h = - 5 t 2 + v 0 t + h 0 表示,其中 h 0 ( m ) 是物体抛出时离地面的高度, v 0 ( m / s ) 是物体抛出时的速度.某人将一个小球从距地面 1 . 5 m 的高处以 20 m / s 的速度竖直向上抛出,小球达到的离地面的最大高度为 (    )

A. 23 . 5 m B. 22 . 5 m C. 21 . 5 m D. 20 . 5 m

来源:2020年山西省中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD 中, AD = 4 ,点 E 在边 AD 上,连接 CE ,以 CE 为边向右上方作正方形 CEFG ,作 FH AD ,垂足为 H ,连接 AF

(1)求证: FH = ED

(2)当 AE 为何值时, ΔAEF 的面积最大?

来源:2018年江苏省徐州市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

如图,矩形 ABCD 中, AB = 4 AD = 2 E 为边 AD 上一个动点,连接 BE ,取 BE 的中点 G ,点 G 绕点 E 逆时针旋转 90 ° 得到点 F ,连接 CF ,则 ΔCEF 面积的最小值是 (    )

A.4B. 15 4 C.3D. 11 4

来源:2018年江苏省无锡市中考数学试卷(副卷)
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

二次函数 y = ( x 1 ) 2 + 5 ,当 m x n mn < 0 时, y 的最小值为 2 m ,最大值为 2 n ,则 m + n 的值为 (    )

A. 5 2 B.2C. 3 2 D. 1 2

来源:2016年浙江省嘉兴市(舟山市)中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

已知二次函数 y = a x 2 + 2 ax + 3 a 2 + 3 (其中 x 是自变量),当 x 2 时, y x 的增大而增大,且 2 x 1 时, y 的最大值为9,则 a 的值为 (    )

A.1或 2 B. 2 2 C. 2 D.1

来源:2018年四川省泸州市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

关于二次函数 y = 2 x 2 + 4 x 1 ,下列说法正确的是 (    )

A.图象与 y 轴的交点坐标为 ( 0 , 1 )

B.图象的对称轴在 y 轴的右侧

C.当 x < 0 时, y 的值随 x 值的增大而减小

D. y 的最小值为 3

来源:2018年四川省成都市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图1,在平面直角坐标系中,直线 MN 分别与 x 轴、 y 轴交于点 M ( 6 , 0 ) N ( 0 2 3 ) ,等边 ΔABC 的顶点 B 与原点 O 重合, BC 边落在 x 轴正半轴上,点 A 恰好落在线段 MN 上,将等边 ΔABC 从图1的位置沿 x 轴正方向以每秒1个单位长度的速度平移,边 AB AC 分别与线段 MN 交于点 E F (如图2所示),设 ΔABC 平移的时间为 t ( s )

(1)等边 ΔABC 的边长为  

(2)在运动过程中,当 t =   时, MN 垂直平分 AB

(3)若在 ΔABC 开始平移的同时.点 P ΔABC 的顶点 B 出发.以每秒2个单位长度的速度沿折线 BA AC 运动.当点 P 运动到 C 时即停止运动. ΔABC 也随之停止平移.

①当点 P 在线段 BA 上运动时,若 ΔPEF ΔMNO 相似.求 t 的值;

②当点 P 在线段 AC 上运动时,设 S ΔPEF = S ,求 S t 的函数关系式,并求出 S 的最大值及此时点 P 的坐标.

来源:2017年四川省攀枝花市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

若一次函数 y = ( a + 1 ) x + a 的图象过第一、三、四象限,则二次函数 y = a x 2 ax (    )

A.有最大值 a 4 .B.有最大值 a 4 .C.有最小值 a 4 .D.有最小值 a 4

来源:2017年四川省眉山市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

已知 m n 是关于 x 的一元二次方程 x 2 2 tx + t 2 2 t + 4 = 0 的两实数根,则 ( m + 2 ) ( n + 2 ) 的最小值是 (    )

A.7B.11C.12D.16

来源:2017年四川省泸州市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

初中数学二次函数的最值试题