初中数学

如图,已知抛物线 y = a x 2 + bx + c ( a b c 为常数, a 0 ) 经过点 ( 2 , 0 ) ,且对称轴为直线 x = 1 2 ,有下列结论:① abc > 0 ;② a + b > 0 ;③ 4 a + 2 b + 3 c < 0 ;④无论 a b c 取何值,抛物线一定经过 ( c 2 a 0 ) ;⑤ 4 a m 2 + 4 bm b 0 .其中正确结论有 (    )

A.

1个

B.

2个

C.

3个

D.

4个

来源:2021年四川省达州市中考数学试卷
  • 更新:2021-08-11
  • 题型:未知
  • 难度:未知

下表中列出的是一个二次函数的自变量 x 与函数 y 的几组对应值:

x

2

0

1

3

y

6

4

6

4

下列各选项中,正确的是 (    )

A.

这个函数的图象开口向下

B.

这个函数的图象与 x 轴无交点

C.

这个函数的最小值小于 6

D.

x > 1 时, y 的值随 x 值的增大而增大

来源:2021年陕西省中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图,二次函数 y = a x 2 + bx + c 的图象经过点 A ( 1 , 0 ) B ( 3 , 0 ) ,与 y 轴交于点 C .下列结论:

ac > 0

②当 x > 0 时, y x 的增大而增大;

3 a + c = 0

a + b a m 2 + bm

其中正确的个数有 (    )

A.

1个

B.

2个

C.

3个

D.

4个

来源:2021年山东省烟台市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图是抛物线 y = a x 2 + bx + c 的部分图象,图象过点 ( 3 , 0 ) ,对称轴为直线 x = 1 ,有下列四个结论:① abc > 0 ;② a b + c = 0 ;③ y 的最大值为3;④方程 a x 2 + bx + c + 1 = 0 有实数根.其中正确的为   (将所有正确结论的序号都填入).

来源:2021年山东省泰安市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图,二次函数 y = a x 2 + bx + c ( a 0 ) 的图象与 x 轴的正半轴交于点 A ,对称轴为直线 x = 1 .下面结论:

abc < 0

2 a + b = 0

3 a + c > 0

④方程 a x 2 + bx + c = 0 ( a 0 ) 必有一个根大于 1 且小于0.

其中正确的是   .(只填序号)

来源:2021年山东省济宁市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

定义: [ a b c ] 为二次函数 y = a x 2 + bx + c ( a 0 ) 的特征数,下面给出特征数为 [ m 1 m 2 m ] 的二次函数的一些结论:①当 m = 1 时,函数图象的对称轴是 y 轴;②当 m = 2 时,函数图象过原点;③当 m > 0 时,函数有最小值;④如果 m < 0 ,当 x > 1 2 时, y x 的增大而减小.其中所有正确结论的序号是   

来源:2021年山东省菏泽市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

已知抛物线 y = a x 2 + bx + c 上的部分点的横坐标 x 与纵坐标 y 的对应值如表:

x

1

0

1

2

3

y

3

0

1

m

3

以下结论正确的是 (    )

A.

抛物线 y = a x 2 + bx + c 的开口向下

B.

x < 3 时, y x 增大而增大

C.

方程 a x 2 + bx + c = 0 的根为0和2

D.

y > 0 时, x 的取值范围是 0 < x < 2

来源:2021年内蒙古赤峰市中考数学试卷
  • 更新:2021-08-19
  • 题型:未知
  • 难度:未知

已知二次函数 y = a x 2 + bx + c 的图象如图所示,有下列结论:① a > 0 ;② b 2 - 4 ac > 0 ;③ 4 a + b = 1 ;④不等式 a x 2 + ( b - 1 ) x + c < 0 的解集为 1 < x < 3 ,正确的结论个数是 (    )

A.

1

B.

2

C.

3

D.

4

来源:2021年江苏省宿迁市中考数学试卷
  • 更新:2021-08-20
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,点 A ( 2 , 4 ) 在抛物线 y = a x 2 上,过点 A y 轴的垂线,交抛物线于另一点 B ,点 C D 在线段 AB 上,分别过点 C D x 轴的垂线交抛物线于 E F 两点.当四边形 CDFE 为正方形时,线段 CD 的长为   

来源:2021年吉林省长春市中考数学试卷
  • 更新:2021-08-21
  • 题型:未知
  • 难度:未知

用数形结合等思想方法确定二次函数 y = x 2 + 2 的图象与反比例函数 y = 2 x 的图象的交点的横坐标 x 0 所在的范围是 (    )

A.

0 < x 0 1 4

B.

1 4 < x 0 1 2

C.

1 2 < x 0 3 4

D.

3 4 < x 0 1

来源:2021年湖南省娄底市中考数学试卷
  • 更新:2021-08-21
  • 题型:未知
  • 难度:未知

如图,已知二次函数 y = a x 2 + bx + c 的图象与 x 轴交于 ( - 3 , 0 ) ,顶点是 ( - 1 , m ) ,则以下结论:① abc > 0 ;② 4 a + 2 b + c > 0 ;③若 y c ,则 x - 2 x 0 ;④ b + c = 1 2 m .其中正确的有 (    ) 个.

A.

1

B.

2

C.

3

D.

4

来源:2021年湖北省恩施州中考数学试卷
  • 更新:2021-08-01
  • 题型:未知
  • 难度:未知

二次函数 y = a x 2 + bx + c ( a 0 ) 的图象的一部分如图所示.已知图象经过点 ( - 1 , 0 ) ,其对称轴为直线 x = 1 .下列结论:

abc < 0

4 a + 2 b + c < 0

8 a + c < 0

④若抛物线经过点 ( - 3 , n ) ,则关于 x 的一元二次方程 a x 2 + bx + c - n = 0 ( a 0 ) 的两根分别为 - 3 ,5.

上述结论中正确结论的个数为 (    )

A.

1个

B.

2个

C.

3个

D.

4个

来源:2021年湖北省鄂州市中考数学试卷
  • 更新:2021-08-01
  • 题型:未知
  • 难度:未知

已知函数 y = a x 2 - ( a + 1 ) x + 1 ,则下列说法不正确的个数是 (    )

①若该函数图像与 x 轴只有一个交点,则 a = 1

②方程 a x 2 - ( a + 1 ) x + 1 = 0 至少有一个整数根;

③若 1 a < x < 1 ,则 y = a x 2 - ( a + 1 ) x + 1 的函数值都是负数;

④不存在实数 a ,使得 a x 2 - ( a + 1 ) x + 1 0 对任意实数 x 都成立.

A.

0

B.

1

C.

2

D.

3

来源:2021年黑龙江省大庆市中考数学试卷
  • 更新:2021-08-01
  • 题型:未知
  • 难度:未知

二次函数 y = a x 2 - 2 ax + c ( a > 0 ) 的图象过 A ( - 3 , y 1 ) B ( - 1 , y 2 ) C ( 2 , y 3 ) D ( 4 , y 4 ) 四个点,下列说法一定正确的是 (    )

A.

y 1 y 2 > 0 ,则 y 3 y 4 > 0

B.

y 1 y 4 > 0 ,则 y 2 y 3 > 0

C.

y 2 y 4 < 0 ,则 y 1 y 3 < 0

D.

y 3 y 4 < 0 ,则 y 1 y 2 < 0

来源:2021年福建省中考数学试卷
  • 更新:2021-07-22
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,抛物线 y a x 2 + bx + 2 a 0 y 轴交于点 C ,与x轴交于 A B 两点(点 A 在点 B 的左侧),且 A 点坐标为 ( - 2 , 0 ) ,直线 BC 的解析式为 y = - 2 3 x + 2

(1)求抛物线的解析式;

(2)过点 A AD BC ,交抛物线于点D,点E为直线 BC 上方抛物线上一动点,连接CEEBBDDC.求四边形BECD面积的最大值及相应点E的坐标;

(3)将抛物线 y a x 2 + bx + 2 a 0 向左平移 2 个单位,已知点 M 为抛物线 y a x 2 + bx + 2 a 0 的对称轴上一动点,点N为平移后的抛物线上一动点.在(2)中,当四边形 BECD 的面积最大时,是否存在以 A E M N 为顶点的四边形为平行四边形?若存在,直接写出点N的坐标;若不存在,请说明理由.

来源:2020年重庆市中考数学试卷(b卷)
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

初中数学二次函数的性质试题