初中数学

一大型商场经营某种品牌商品,该商品的进价为每件3元,根据市场调查发现,该商品每周的销售量(件与售价(元件)为正整数)之间满足一次函数关系,下表记录的是某三周的有关数据:

(元件)

4

5

6

(件

10000

9500

9000

(1)求的函数关系式(不求自变量的取值范围);

(2)在销售过程中要求销售单价不低于成本价,且不高于15元件.若某一周该商品的销售量不少于6000件,求这一周该商场销售这种商品获得的最大利润和售价分别为多少元?

(3)抗疫期间,该商场这种商品售价不大于15元件时,每销售一件商品便向某慈善机构捐赠,捐赠后发现,该商场每周销售这种商品的利润仍随售价的增大而增大.请直接写出的取值范围.

来源:2020年湖北省鄂州市中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

某文体商店计划购进一批同种型号的篮球和同种型号的排球,每一个排球的进价是每一个篮球的进价的,用3600元购买排球的个数要比用3600元购买篮球的个数多10个.

(1)问每一个篮球、排球的进价各是多少元?

(2)该文体商店计划购进篮球和排球共100个,且排球个数不低于篮球个数的3倍,篮球的售价定为每一个100元,排球的售价定为每一个90元.若该批篮球、排球都能卖完,问该文体商店应购进篮球、排球各多少个才能获得最大利润?最大利润是多少?

来源:2020年贵州省铜仁市中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

黔东南州某超市购进甲、乙两种商品,已知购进3件甲商品和2件乙商品,需60元;购进2件甲商品和3件乙商品,需65元.

(1)甲、乙两种商品的进货单价分别是多少?

(2)设甲商品的销售单价为(单位:元件),在销售过程中发现:当时,甲商品的日销售量(单位:件)与销售单价之间存在一次函数关系,之间的部分数值对应关系如表:

销售单价(元件)

11

19

日销售量(件

18

2

请写出当时,之间的函数关系式.

(3)在(2)的条件下,设甲商品的日销售利润为元,当甲商品的销售单价(元件)定为多少时,日销售利润最大?最大利润是多少?

来源:2020年贵州省黔东南州中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

第33个国际禁毒日到来之际,贵阳市策划了以“健康人生 绿色无毒”为主题的禁毒宣传月活动,某班开展了此项活动的知识竞赛.学习委员为班级购买奖品后与生活委员对话如下:

(1)请用方程的知识帮助学习委员计算一下,为什么说学习委员搞错了;

(2)学习委员连忙拿出发票,发现的确错了,因为他还买了一本笔记本,但笔记本的单价已模糊不清,只能辨认出单价是小于10元的整数,那么笔记本的单价可能是多少元?

来源:2020年贵州省贵阳市中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

为抗击疫情,支持武汉,某物流公司的快递车和货车每天往返于物流公司、武汉两地,快递车比货车多往返一趟,如图表示两车离物流公司的距离(单位:千米)与快递车所用时间(单位:时)的函数图象,已知货车比快递车早1小时出发,到达武汉后用2小时装卸货物,按原速、原路返回,货车比快递车最后一次返回物流公司晚1小时.

(1)求的函数解析式;

(2)求快递车第二次往返过程中,与货车相遇的时间.

(3)求两车最后一次相遇时离武汉的距离.(直接写出答案)

来源:2020年黑龙江省七台河市中考数学试卷(农垦、森工用)
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

在一条公路上依次有三地,甲车从地出发,驶向地,同时乙车从地出发驶向地,到达地停留0.5小时后,按原路原速返回地,两车匀速行驶,甲车比乙车晚1.5小时到达地.两车距各自出发地的路程(千米)与时间(小时)之间的函数关系如图所示.请结合图象信息答案下列问题:

(1)甲车行驶速度是   千米1时,两地的路程为  千米;

(2)求乙车从地返回地的过程中,(千米)与(小时)之间的函数关系式(不需要写出自变量的取值范围);

(3)出发多少小时,行驶中的两车之间的路程是15千米?请你直接写出答案.

来源:2020年黑龙江省牡丹江市中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

某商场准备购进两种型号电脑,每台型号电脑进价比每台型号电脑多500元,用40000元购进型号电脑的数量与用30000元购进型号电脑的数量相同,请解答下列问题:

(1)型号电脑每台进价各是多少元?

(2)若每台型号电脑售价为2500元,每台型号电脑售价为1800元,商场决定同时购进两种型号电脑20台,且全部售出,请写出所获的利润(单位:元)与型号电脑(单位:台)的函数关系式,若商场用不超过36000元购进两种型号电脑,型号电脑至少购进10台,则有几种购买方案?

(3)在(2)问的条件下,将不超过所获得的最大利润再次购买两种型号电脑捐赠给某个福利院,请直接写出捐赠型号电脑总数最多是多少台.

来源:2020年黑龙江省牡丹江市、鸡西市朝鲜族学校中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

两城市之间有一条公路相连,公路中途穿过市,甲车从市到市,乙车从市到市,甲车的速度比乙车的速度慢20千米时,两车距离市的路程(单位:千米)与驶的时间(单位:小时)的函数图象如图所示,结合图象信息,解答下列问题:

(1)甲车的速度是  千米时,在图中括号内填入正确的数;

(2)求图象中线段所在直线的函数解析式,不需要写出自变量的取值范围;

(3)直接写出甲车出发后几小时,两车距市的路程之和是460千米.

来源:2020年黑龙江省牡丹江市、鸡西市朝鲜族学校中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

期中考试后,某班班主任对在期中考试中取得优异成绩的同学进行表彰.她到商场购买了甲、乙两种笔记本作为奖品,购买甲种笔记本15个,乙种笔记本20个,共花费250元.已知购买一个甲种笔记本比购买一个乙种笔记本多花费5元.

(1)求购买一个甲种、一个乙种笔记本各需多少元?

(2)两种笔记本均受到了获奖同学的喜爱,班主任决定在期末考试后再次购买两种笔记本共35个,正好赶上商场对商品价格进行调整,甲种笔记本售价比上一次购买时减价2元,乙种笔记本按上一次购买时售价的8折出售.如果班主任此次购买甲、乙两种笔记本的总费用不超过上一次总费用的,求至多需要购买多少个甲种笔记本?并求购买两种笔记本总费用的最大值.

来源:2020年黑龙江省大庆市中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

随着人们“节能环保,绿色出行”意识的增强,越来越多的人喜欢骑自行车出行,也给自行车商家带来商机.某自行车行经营的型自行车去年销售总额为8万元.今年该型自行车每辆售价预计比去年降低200元.若该型车的销售数量与去年相同,那么今年的销售总额将比去年减少,求:

(1)型自行车去年每辆售价多少元?

(2)该车行今年计划新进一批型车和新款型车共60辆,且型车的进货数量不超过型车数量的两倍.已知型车和型车的进货价格分别为1500元和1800元,计划型车销售价格为2400元,应如何组织进货才能使这批自行车销售获利最多?

来源:2020年贵州省黔西南州中考数学试卷
  • 更新:2020-12-29
  • 题型:未知
  • 难度:未知

倡导垃圾分类,共享绿色生活.为了对回收的垃圾进行更精准的分类,某机器人公司研发出型和型两款垃圾分拣机器人,已知2台型机器人和5台型机器人同时工作共分拣垃圾3.6吨,3台型机器人和2台型机器人同时工作共分拣垃圾8吨.

(1)1台型机器人和1台型机器人每小时各分拣垃圾多少吨?

(2)某垃圾处理厂计划向机器人公司购进一批型和型垃圾分拣机器人,这批机器人每小时一共能分拣垃圾20吨.设购买型机器人型机器人台,请用含的代数式表示

(3)机器人公司的报价如下表:

型号

原价

购买数量少于30台

购买数量不少于30台

20万元

原价购买

打九折

12万元

原价购买

打八折

在(2)的条件下,设购买总费用为万元,问如何购买使得总费用最少?请说明理由.

来源:2020年广西南宁市中考数学试卷
  • 更新:2020-12-29
  • 题型:未知
  • 难度:未知

某水果市场销售一种香蕉.甲店的香蕉价格为4元;乙店的香蕉价格为5元,若一次购买以上,超过部分的价格打7折.

(1)设购买香蕉,付款金额元,分别就两店的付款金额写出关于的函数解析式;

(2)到哪家店购买香蕉更省钱?请说明理由.

来源:2020年广西河池市中考数学试卷
  • 更新:2020-12-29
  • 题型:未知
  • 难度:未知

天水市某商店准备购进两种商品,种商品每件的进价比种商品每件的进价多20元,用2000元购进种商品和用1200元购进种商品的数量相同.商店将种商品每件的售价定为80元,种商品每件的售价定为45元.

(1)种商品每件的进价和种商品每件的进价各是多少元?

(2)商店计划用不超过1560元的资金购进两种商品共40件,其中种商品的数量不低于种商品数量的一半,该商店有几种进货方案?

(3)“五一”期间,商店开展优惠促销活动,决定对每件种商品售价优惠元,种商品售价不变,在(2)的条件下,请设计出的不同取值范围内,销售这40件商品获得总利润最大的进货方案.

来源:2020年甘肃省天水市中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

端午节前夕,某商铺用620元购进50个肉粽和30个蜜枣粽,肉粽的进货单价比蜜枣粽的进货单价多6元.

(1)肉粽和蜜枣粽的进货单价分别是多少元?

(2)由于粽子畅销,商铺决定再购进这两种粽子共300个,其中肉粽数量不多于蜜枣粽数量的2倍,且每种粽子的进货单价保持不变,若肉粽的销售单价为14元,蜜枣粽的销售单价为6元,试问第二批购进肉粽多少个时,全部售完后,第二批粽子获得利润最大?第二批粽子的最大利润是多少元?

来源:2020年广东省深圳市中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

《人民日报》点赞湖北宜昌“智慧停车平台”.作为“全国智慧城市”试点,我市通过“互联网”、“大数据”等新科技,打造“智慧停车平台”,着力化解城市“停车难”问题.市内某智慧公共停车场的收费标准是:停车不超过30分钟,不收费;超过30分钟,不超过60分钟,计1小时,收费3元;超过1小时后,超过1小时的部分按每小时2元收费(不足1小时,按1小时计).

(1)填空:若市民张先生某次在该停车场停车2小时10分钟,应交停车费  元.若李先生也在该停车场停车,支付停车费11元,则停车场按  小时(填整数)计时收费.

(2)当取整数且时,求该停车场停车费(单位:元)关于停车计时(单位:小时)的函数解析式.

来源:2019年湖北省宜昌市中考数学试卷
  • 更新:2020-12-30
  • 题型:未知
  • 难度:未知

初中数学一次函数的应用试题