某通讯公司就上宽带网推出 , , 三种月收费方式.这三种收费方式每月所需的费用 (元 与上网时间 的函数关系如图所示,则下列判断错误的是
A.每月上网时间不足 时,选择 方式最省钱
B.每月上网费用为60元时, 方式可上网的时间比 方式多
C.每月上网时间为 时,选择 方式最省钱
D.每月上网时间超过 时,选择 方式最省钱
某水果店以每千克8元的价格购进苹果若干千克,销售了部分苹果后,余下的苹果每千克降价4元销售,全部售完.销售金额 (元 与销售量 (千克)之间的关系如图所示,请根据图象提供的信息完成下列问题:
(1)降价前苹果的销售单价是 元 千克;
(2)求降价后销售金额 (元 与销售量 (千克)之间的函数解析式,并写出自变量的取值范围;
(3)该水果店这次销售苹果盈利了多少元?
小刚去超市购买画笔,第一次花60元买了若干支 型画笔,第二次超市推荐了 型画笔,但 型画笔比 型画笔的单价贵2元,他又花100元买了相同支数的 型画笔.
(1)超市 型画笔单价多少元?
(2)小刚使用两种画笔后,决定以后使用 型画笔,但感觉其价格稍贵,和超市沟通后,超市给出以下优惠方案:一次购买不超过20支,则每支 型画笔打九折;若一次购买超过20支,则前20支打九折,超过的部分打八折.设小刚购买的 型画笔 支,购买费用为 元,请写出 关于 的函数关系式.
(3)在(2)的优惠方案下,若小刚计划用270元购买 型画笔,则能购买多少支 型画笔?
某周日上午 小宇从家出发,乘车1小时到达某活动中心参加实践活动. 时他在活动中心接到爸爸的电话,因急事要求他在 前回到家,他即刻按照来活动中心时的路线,以5千米 小时的平均速度快步返回.同时,爸爸从家沿同一路线开车接他,在距家20千米处接上了小宇,立即保持原来的车速原路返回.设小宇离家 (小时)后,到达离家 (千米)的地方,图中折线 表示 与 之间的函数关系.
(1)活动中心与小宇家相距 千米,小宇在活动中心活动时间为 小时,他从活动中心返家时,步行用了 小时;
(2)求线段 所表示的 (千米)与 (小时)之间的函数关系式(不必写出 所表示的范围);
(3)根据上述情况(不考虑其他因素),请判断小宇是否能在 前回到家,并说明理由.
某日上午,甲,乙两车先后从 地出发沿同一条公路匀速前往 地,甲车8点出发,如图是其行驶路程 (千米)随行驶时间 (小时)变化的图象.乙车9点出发,若要在10点至11点之间(含10点和11点)追上甲车,则乙车的速度 (单位:千米 小时)的范围是 .
暑假期间,小刚一家乘车去离家380公里的某景区旅游,他们离家的距离 与汽车行驶时间 之间的函数图象如图所示.
(1)从小刚家到该景区乘车一共用了多少时间?
(2)求线段 对应的函数解析式;
(3)小刚一家出发2.5小时时离目的地多远?
在一次机器"猫"抓机器"鼠"的展演测试中,"鼠"先从起点出发, 后,"猫"从同一起点出发去追"鼠",抓住"鼠"并稍作停留后,"猫"抓着"鼠"沿原路返回."鼠"、"猫"距起点的距离 与时间 之间的关系如图所示.
(1)在"猫"追"鼠"的过程中,"猫"的平均速度与"鼠"的平均速度的差是 ;
(2)求 的函数表达式;
(3)求"猫"从起点出发到返回至起点所用的时间.
在"新冠"疫情期间,全国人民"众志成城,同心抗疫",某商家决定将一个月获得的利润全部捐赠给社区用于抗疫.已知商家购进一批产品,成本为10元 件,拟采取线上和线下两种方式进行销售.调查发现,线下的月销量 (单位:件)与线下售价 (单位:元 件, 满足一次函数的关系,部分数据如下表:
(元 件) |
12 |
13 |
14 |
15 |
16 |
(件 |
1200 |
1100 |
1000 |
900 |
800 |
(1)求 与 的函数关系式;
(2)若线上售价始终比线下每件便宜2元,且线上的月销量固定为400件.试问:当 为多少时,线上和线下月利润总和达到最大?并求出此时的最大利润.
“五 一”期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游.
根据以下信息,解答下列问题:
(1)设租车时间为 小时,租用甲公司的车所需费用为 元,租用乙公司的车所需费用为 元,分别求出 , 关于 的函数表达式;
(2)请你帮助小明计算并选择哪个出游方案合算.
甲无人机从地面起飞,乙无人机从距离地面 高的楼顶起飞,两架无人机同时匀速上升 .甲、乙两架无人机所在的位置距离地面的高度 (单位: 与无人机上升的时间 (单位: 之间的关系如图所示.下列说法正确的是
A. |
时,两架无人机都上升了 |
B. |
时,两架无人机的高度差为 |
C. |
乙无人机上升的速度为 |
D. |
时,甲无人机距离地面的高度是 |
某通讯公司就手机流量套餐推出三种方案,如下表:
|
方案 |
方案 |
方案 |
每月基本费用(元 |
20 |
56 |
266 |
每月免费使用流量(兆 |
1024 |
|
无限 |
超出后每兆收费(元 |
|
|
|
, , 三种方案每月所需的费用 (元 与每月使用的流量 (兆 之间的函数关系如图所示.
(1)请写出 , 的值.
(2)在 方案中,当每月使用的流量不少于1024兆时,求每月所需的费用 (元 与每月使用的流量 (兆 之间的函数关系式.
(3)在这三种方案中,当每月使用的流量超过多少兆时,选择 方案最划算?
某品牌鞋子的长度 与鞋子的"码"数 之间满足一次函数关系.若22码鞋子的长度为 ,44码鞋子的长度为 ,则38码鞋子的长度为
A. |
|
B. |
|
C. |
|
D. |
|
下面图片是七年级教科书中“实际问题与一元一次方程”的探究3.
探究3
电话计费问题
下表中有两种移动电话计费方式.
月使用费 元 |
主叫限定时间 |
主叫超时费 (元 |
被叫 |
|
方式一 |
58 |
150 |
0.25 |
免费 |
方式二 |
88 |
350 |
0.19 |
免费 |
考虑下列问题:
月使用费固定收: 主叫不超限定时间不再收费,主叫超时部分加收超时费,被叫免费. |
(1)设一个月内用移动电话主叫为 是正整数).根据上表,列表说明:当 在不同时间范围内取值时,按方式一和方式二如何计费.
(2)观察你的列表,你能从中发现如何根据主叫时间选择省钱的计费方式吗?通过计算验证你的看法.
小明升入初三再看这个问题,发现两种计费方式,每一种都是因主叫时间的变化而引起计费的变化,他把主叫时间视为在正实数范围内变化,决定用函数来解决这个问题.
(1)根据函数的概念,小明首先将问题中的两个变量分别设为自变量 和自变量的函数 ,请你帮小明写出:
表示问题中的 , 表示问题中的 .
并写出计费方式一和二分别对应的函数解析式;
(2)在给出的正方形网格纸上画出(1)中两个函数的大致图象,并依据图象写出如何根据主叫时间选择省钱的计费方式.(注 坐标轴单位长度可根据需要自己确定)
暑期将至,某健身俱乐部面向学生推出暑期优惠活动,活动方案如下.
方案一:购买一张学生暑期专享卡,每次健身费用按六折优惠;
方案二:不购买学生暑期专享卡,每次健身费用按八折优惠.
设某学生暑期健身 (次 ,按照方案一所需费用为 (元 ,且 ;按照方案二所需费用为 (元 ,且 .其函数图象如图所示.
(1)求 和 的值,并说明它们的实际意义;
(2)求打折前的每次健身费用和 的值;
(3)八年级学生小华计划暑期前往该俱乐部健身8次,应选择哪种方案所需费用更少?说明理由.