在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,并结合图象研究函数性质及其应用的过程.以下是我们研究函数 的性质及其应用的部分过程,请按要求完成下列各小题.
(1)请把下表补充完整,并在给出的图中补全该函数的大致图象;
|
|
|
|
|
|
|
0 |
1 |
2 |
3 |
4 |
5 |
|
|
|
|
|
|
0 |
|
4 |
|
0 |
|
|
|
|
(2)请根据这个函数的图象,写出该函数的 条性质;
(3)已知函数 的图象如图所示.根据函数图象,直接写出不等式 的解集.(近似值保留一位小数,误差不超过
根据数学家凯勒的"百米赛跑数学模型",前30米称为"加速期",30米 米为"中途期",80米 米为"冲刺期".市田径队把运动员小斌某次百米跑训练时速度 与路程 之间的观测数据,绘制成曲线如图所示.
(1) 是关于 的函数吗?为什么?
(2)"加速期"结束时,小斌的速度为多少?
(3)根据如图提供的信息,给小斌提一条训练建议.
在"看图说故事"活动中,某学习小组结合图象设计了一个问题情境.已知学校、书店、陈列馆依次在同一条直线上,书店离学校 ,陈列馆离学校 .李华从学校出发,匀速骑行 到达书店;在书店停留 后,匀速骑行 到达陈列馆;在陈列馆参观学习一段时间,然后回学校;回学校途中,匀速骑行 后减速,继续匀速骑行回到学校.给出的图象反映了这个过程中李华离学校的距离 与离开学校的时间 之间的对应关系.
请根据相关信息,解答下列问题:
(Ⅰ)填表:
离开学校的时间 |
0.1 |
0.5 |
0.8 |
1 |
3 |
离学校的距离 |
2 |
10 |
|
12 |
|
(Ⅱ)填空:
①书店到陈列馆的距离为 ;
②李华在陈列馆参观学习的时间为 ;
③李华从陈列馆回学校途中,减速前的骑行速度为 ;
④当李华离学校的距离为 时,他离开学校的时间为 .
(Ⅲ)当 时,请直接写出 关于 的函数解析式.
函数图象是研究函数的重要工具。探究函数性质时,我们经历了列表、描点、连线画出函数图象,然后观察分析图象特征,概括函数性质的过程。请结合已有的学习经验,画出函数 的图象,并探究其性质.
列表如下:
|
|
|
|
|
|
0 |
1 |
2 |
3 |
4 |
|
|
|
|
|
|
|
0 |
|
|
|
|
|
(1)写出表中 、 的值,并在平面直角坐标系中画出该函数的图象;
(2)观察函数 的图象,判断下列关于该函数性质的命题:
①当 时,函数图象关于直线 对称;
② 时,函数有最小值,最小值为 ;
③ 时,函数 的值随 的增大而减小.
其中正确的是 .(请写出所有正确命题的番号)
(3)结合图象,请写出不等式 的解集 .
已知函数
(1)画出函数图象;
列表:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
描点,连线得到函数图象:
(2)该函数是否有最大或最小值?若有,求出其值,若没有,简述理由;
(3)设 , , , 是函数图象上的点,若 ,证明: .
一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶,两车在途中相遇时,快车恰巧出现故障,慢车继续驶往甲地,快车维修好后按原速继续行驶乙地,两车到达各地终点后停止,两车之间的距离 与慢车行驶的时间 之间的关系如图:
(1)快车的速度为 , 点的坐标为 .
(2)慢车出发多少小时后,两车相距 .
小欣在学习了反比例函数的图象与性质后,进一步研究了函数 的图象与性质.其研究过程如下:
(1)绘制函数图象
①列表:如表是 与 的几组对应值,其中 ;
|
|
|
|
|
|
|
|
|
0 |
1 |
2 |
|
|
|
|
|
|
|
|
3 |
2 |
|
|
|
|
②描点:根据表中的数值描点 ,请补充描出点 ;
③连线:用平滑的曲线顺次连接各点,请把图象补充完整.
(2)探究函数性质
判断下列说法是否正确(正确的填“ ”,错误的填“ ”
①函数值 随 的增大而减小: .
②函数图象关于原点对称: .
③ 函数图象与直线 没有交点: .
小红帮弟弟荡秋千(如图 ,秋千离地面的高度 与摆动时间 之间的关系如图2所示.
(1)根据函数的定义,请判断变量 是否为关于 的函数?
(2)结合图象回答:
①当 时, 的值是多少?并说明它的实际意义.
②秋千摆动第一个来回需多少时间?
某周日上午 小宇从家出发,乘车1小时到达某活动中心参加实践活动. 时他在活动中心接到爸爸的电话,因急事要求他在 前回到家,他即刻按照来活动中心时的路线,以5千米 小时的平均速度快步返回.同时,爸爸从家沿同一路线开车接他,在距家20千米处接上了小宇,立即保持原来的车速原路返回.设小宇离家 (小时)后,到达离家 (千米)的地方,图中折线 表示 与 之间的函数关系.
(1)活动中心与小宇家相距 千米,小宇在活动中心活动时间为 小时,他从活动中心返家时,步行用了 小时;
(2)求线段 所表示的 (千米)与 (小时)之间的函数关系式(不必写出 所表示的范围);
(3)根据上述情况(不考虑其他因素),请判断小宇是否能在 前回到家,并说明理由.
甲车从地驶往地,同时乙车从地驶往地,两车相向而行,匀速行驶,甲车距地的距离与行驶时间之间的函数关系如图所示,乙车的速度是
(1)求甲车的速度;
(2)当甲乙两车相遇后,乙车速度变为,并保持匀速行驶,甲车速度保持不变,结果乙车比甲车晚38分钟到达终点,求的值.
甲车从地驶往地,同时乙车从地驶往地,两车相向而行,匀速行驶,甲车距地的距离与行驶时间之间的函数关系如图所示,乙车的速度是
(1)求甲车的速度;
(2)当甲乙两车相遇后,乙车速度变为,并保持匀速行驶,甲车速度保持不变,结果乙车比甲车晚38分钟到达终点,求的值.
通过课本上对函数的学习,我们积累了一定的经验.下表是一个函数的自变量与函数值的部分对应值,请你借鉴以往学习函数的经验,探究下列问题:
0 |
1 |
2 |
3 |
4 |
5 |
|||
6 |
3 |
2 |
1.5 |
1.2 |
1 |
(1)当 时,;
(2)根据表中数值描点,并画出函数图象;
(3)观察画出的图象,写出这个函数的一条性质: .
某农作物的生长率与温度有如下关系:如图1,当时可近似用函数刻画;当时可近似用函数刻画.
(1)求的值.
(2)按照经验,该作物提前上市的天数(天与生长率满足函数关系:
生长率 |
0.2 |
0.25 |
0.3 |
0.35 |
提前上市的天数(天 |
0 |
5 |
10 |
15 |
①请运用已学的知识,求关于的函数表达式;
②请用含的代数式表示.
(3)天气寒冷,大棚加温可改变农作物生长速度.在(2)的条件下,原计划大棚恒温时,每天的成本为200元,该作物30天后上市时,根据市场调查:每提前一天上市售出(一次售完),销售额可增加600元.因此给大棚继续加温,加温后每天成本(元与大棚温度之间的关系如图2.问提前上市多少天时增加的利润最大?并求这个最大利润(农作物上市售出后大棚暂停使用).
数学活动课上,张老师引导同学进行如下探究:
如图1,将长为的铅笔斜靠在垂直于水平桌面的直尺的边沿上,一端固定在桌面上,图2是示意图.
活动一
如图3,将铅笔绕端点顺时针旋转,与交于点,当旋转至水平位置时,铅笔的中点与点重合.
数学思考
(1)设,点到的距离.
①用含的代数式表示:的长是 ,的长是 ;
②与的函数关系式是 ,自变量的取值范围是 .
活动二
(2)①列表:根据(1)中所求函数关系式计算并补全表格
6 |
5 |
4 |
3.5 |
3 |
2.5 |
2 |
1 |
0.5 |
0 |
|
0 |
0.55 |
1.2 |
1.58 |
|
2.47 |
3 |
4.29 |
5.08 |
|
②描点:根据表中数值,继续描出①中剩余的两个点.
③连线:在平面直角坐标系中,请用平滑的曲线画出该函数的图象.
数学思考
(3)请你结合函数的图象,写出该函数的两条性质或结论.
某校拟建一个面积为 的矩形健身区,张老师请同学们小组合作设计出使周长最小的建造方案,下面是其中一个小组的探究过程,请补充完整
(1)列式
设矩形的一边长是 ,则另一边长是 ,若周长为 ,则 与 之间的函数关系式为
(2)画图
①列表
|
|
4 |
6 |
10 |
13 |
16 |
20 |
25 |
30 |
|
|
|
58 |
|
40 |
|
|
|
58 |
|
|
表中
②描点:如图所示;
③连线:请在图中画出该函数的图象.
(3)发现
图象最低点的坐标为 ,即当 时,周长 有最小值 ;
(4)验证
在张老师的指导下,同学们将 与 之间的函数关系式进行配方,得出 .
.
当 时, 有最小值;
此方程可化为 ;
当 时,周长 有最小值 .