如图,点 在直线 上,过点 分别作 轴、 轴的平行线交直线 于点 , ,过点 作 轴的平行线交直线 于点 ,过点 作 轴的平行线交直线 于点 , ,按照此规律进行下去,则点 的横坐标为 .
在平面直角坐标系中,直线 与 轴交于点 ,如图所示依次作正方形 、正方形 、 、正方形 ,使得点 、 、 、 在直线 上,点 、 、 、 在 轴正半轴上,则点 的坐标是 .
如图,点 的坐标为 , 在 轴的正半轴上,且 ,过点 作 ,垂足为 ,交 轴于点 ;过点 作 ,垂足为 ,交 轴于点 ;过点 作 ,垂足为 ,交 轴于点 ;过点 作 ,垂足为 ,交 轴于点 ; 按此规律进行下去,则点 的纵坐标为 .
如图,在平面直角坐标系中,直线 交 轴于点 ,交 轴于点 ,点 , , 在直线 上,点 , , , 在 轴的正半轴上,若△ ,△ ,△ , ,依次均为等腰直角三角形,直角顶点都在 轴上,则第 个等腰直角三角形 顶点 的横坐标为 .
如图,在平面直角坐标系中,边长为1的正方形 的两边在坐标轴上,以它的对角线 为边作正方形 ,再以正方形 的对角线 为边作正方形 ,以此类推 、则正方形 的顶点 的坐标是 .
如图,在平面直角坐标系中,函数 和 的图象分别为直线 , ,过点 作 轴的垂线交 于点 ,过点 作 轴的垂线交 于点 ,过点 作 轴的垂线交 于点 ,过点 作 轴的垂线交 于点 , 依次进行下去,则点 的坐标为 .
如图, △ 在平面直角坐标系内, , ,以 为直角边向外作 △ ,使 , ,以 为直角边向外作 △ ,使 , ,按此方法进行下去,得到 △ , △ , , △ ,若点 ,则点 的横坐标为 .
如图,直线 上有点 , , , ,且 , , , ,分别过点 , , , 作直线 的垂线,交 轴于点 , , , ,依次连接 , , , ,得到△ ,△ ,△ , ,△ ,则△ 的面积为 .(用含正整数 的式子表示)
如图,在平面直角坐标系中,直线 与 轴交于点 ,与 轴交于点 ,过点 作 轴的垂线交直线 于点 ,过点 作 的垂线交 轴于点 ,此时点 与原点 重合,连接 交 轴于点 ,得到第1个△ ;过点 作 轴的垂线交 于点 ,过点 作 轴的平行线交 于点 ,连接 与 交于点 ,得到第2个△ 按照此规律进行下去,则第2019个△ 的面积是 .
如图,点 , , , 在 轴正半轴上,点 , , , , 在 轴正半轴上,点 , , , , 在第一象限角平分线 上, , , , , , , ,则第 个四边形 的面积是 .
如图,在平面直角坐标系中, ,△ ,△ ,△ △ 都是等腰直角三角形,点 , , , 都在 轴上,点 与原点重合,点 , , , 都在直线 上,点 在 轴上, 轴, 轴,若点 的横坐标为 ,则点 的纵坐标是 .
如图,在平面直角坐标系中,将 沿 轴向右滚动到△ 的位置,再到△ 的位置 依次进行下去,若已知点 , ,则点 的坐标为
A. B. C. D.
如图,直线 的解析式是 ,直线 的解析式是 ,点 在 上, 的横坐标为 ,作 交 于点 ,点 在 上,以 , 为邻边在直线 , 间作菱形 ,分别以点 , 为圆心,以 为半径画弧得扇形 和扇形 ,记扇形 与扇形 重叠部分的面积为 ;延长 交 于点 ,点 在 上,以 , 为邻边在 , 间作菱形 ,分别以点 , 为圆心,以 为半径画弧得扇形 和扇形 ,记扇形 与扇形 重叠部分的面积为 按照此规律继续作下去,则 .(用含有正整数 的式子表示)
如图,在平面直角坐标系中, ,以 为一边,在第一象限作菱形 ,并使 ,再以对角线 为一边,在如图所示的一侧作相同形状的菱形 ,再依次作菱形 , , ,则过点 , , 的圆的圆心坐标为 .