在平面直角坐标系中,平行四边形 的对称中心是坐标原点,顶点 、 的坐标分别是 、 ,将平行四边形 沿 轴向右平移3个单位长度,则顶点 的对应点 的坐标是 .
如图,在直角坐标系中,矩形 的顶点 在坐标原点,顶点 , 分别在 轴, 轴上, , 两点坐标分别为 , ,线段 在边 上移动,保持 ,当四边形 的周长最小时,点 的坐标为 .
如图,在平面直角坐标系中,矩形 的两边 、 分别在坐标轴上,且 , ,连接 .反比例函数 的图象经过线段 的中点 ,并与 、 分别交于点 、 .一次函数 的图象经过 、 两点.
(1)分别求出一次函数和反比例函数的表达式;
(2)点 是 轴上一动点,当 的值最小时,点 的坐标为 .
如图,一次函数 与反比例函数 的图象交于点 ,过点 作 ,交 轴于点 ;作 ,交反比例函数图象于点 ;过点 作 交 轴于点 ;再作 ,交反比例函数图象于点 ,依次进行下去, ,则点 的横坐标为 .
如图,△ ,△ ,△ , ,△ 都是斜边在 轴上的等腰直角三角形,点 , , , , 都在 轴上,点 , , , , 都在反比例函数 的图象上,则点 的坐标为 .(用含有正整数 的式子表示)
在平面直角坐标系中,点 , .以 为一边在第一象限作正方形 ,则对角线 所在直线的解析式为
A. |
|
B. |
|
C. |
|
D. |
|
如图,点 、 在反比例函数 的图象上,延长 交 轴于 点,若 的面积是12,且点 是 的中点,则 .
如图,在平面直角坐标系中, 的边 , 的中点 , 的横坐标分别是1,4,则点 的横坐标是 .
在平面直角坐标系 中,对于 、 两点,若在 轴上存在点 ,使得 ,且 ,则称 、 两点互相关联,把其中一个点叫做另一个点的关联点.已知点 、 ,点 在一次函数 的图象上.
(1)①如图,在点 、 、 中,点 的关联点是 (填" "、" "或" " ;
②若在线段 上存在点 的关联点 ,则点 的坐标是 ;
(2)若在线段 上存在点 的关联点 ,求实数 的取值范围;
(3)分别以点 、 为圆心,1为半径作 、 .若对 上的任意一点 ,在 上总存在点 ,使得 、 两点互相关联,请写出点 的坐标.
如图,在平面直角坐标系 中,四边形 是平行四边形,其中点 在 轴正半轴上.若 ,则点 的坐标是 .
如图,菱形 的四个顶点均在坐标轴上,对角线 、 交于原点 , 于 点,交 于 点,反比例函数 的图象经过线段 的中点 ,若 ,则 的长为
A. |
|
B. |
|
C. |
|
D. |
|
如图,在平面直角坐标系中, 的边 在 轴上, ,且线段 的长是方程 的根,过点 作 轴,垂足为 , ,动点 以每秒1个单位长度的速度,从点 出发,沿线段 向点 运动,到达点 停止.过点 作 轴的垂线,垂足为 ,以 为边作正方形 ,点 在线段 上,设正方形 与 重叠部分的面积为 ,点 的运动时间为 秒.
(1)求点 的坐标;
(2)求 关于 的函数关系式,并写出自变量 的取值范围;
(3)当点 落在线段 上时,坐标平面内是否存在一点 ,使以 、 、 、 为顶点的四边形是平行四边形?若存在,直接写出点 的坐标;若不存在,请说明理由.