定义:在平面直角坐标系中,一个图形先向右平移 个单位,再绕原点按顺时针方向旋转 角度,这样的图形运动叫作图形的 变换.
如图,等边 的边长为1,点 在第一象限,点 与原点 重合,点 在 轴的正半轴上.△ 就是 经 变换后所得的图形.
若 经 变换后得△ ,△ 经 变换后得△ ,△ 经 变换后得△ ,依此类推
△ 经 变换后得△ ,则点 的坐标是 ,点 的坐标是 .
如图,正 的边长为2, 为坐标原点, 在 轴上, 在第二象限, 沿 轴正方向作无滑动的翻滚,经一次翻滚后得到△ ,则翻滚3次后点 的对应点的坐标是 ,翻滚2017次后 中点 经过的路径长为 .
已知直角坐标系内有四个点 , , , ,若以 , , , 为顶点的四边形是平行四边形,则 .
在平面直角坐标系中,已知 , , ,若线段 与 互相平分,则点 关于坐标原点的对称点的坐标为 .
如图,在平面直角坐标系中,等腰直角三角形 的直角边 在 轴上,点 在第一象限,且 ,以点 为直角顶点, 为一直角边作等腰直角三角形 ,再以点 为直角顶点, 为直角边作等腰直角三角形 依此规律,则点 的坐标是 .
如图,直线 与两坐标轴分别交于 , 两点,将线段 分成 等份,分点分别为 , , , , ,过每个分点作 轴的垂线分别交直线 于点 , , , , ,用 , , , , 分别表示 △ , △ , , △ 的面积,则 .
如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是 和 ,那么“卒”的坐标为 .
如图, 的顶点 在坐标原点, 边在 轴上, , ,把 绕点 按顺时针方向旋转到△ ,使得点 的坐标是 ,则在旋转过程中线段 扫过部分(阴影部分)的面积为 .
如图,平面直角坐标系中,矩形 的顶点 , , .将矩形 绕点 顺时针方向旋转,使点 恰好落在 上的点 处,则点 的对应点 的坐标为 .
如图,将平行四边形 放置在平面直角坐标系 中, 为坐标原点,若点 的坐标是 ,点 的坐标是 ,则点 的坐标是 .
如图,方格纸上每个小正方形的边长均为1个单位长度,点 , , , 在格点(两条网格线的交点叫格点)上,以点 为原点建立直角坐标系,则过 , , 三点的圆的圆心坐标为 .
如图,反比例函数 的图象经过 对角线的交点 ,已知点 , , 在坐标轴上, , 的面积为6,则 .