初中数学

为增强学生体质,丰富学生课余活动,学校决定添置一批篮球和足球.甲、乙两家商场以相同的价格出售同种品牌的篮球和足球,已知篮球价格为200元 / 个,足球价格为150元 / 个.

(1)若学校计划用不超过3550元的总费用购买这款篮球和足球共20个,且购买篮球的数量多于购买足球数量的 2 3 .学校有哪几种购买方案?

(2)若甲、乙两商场各自推出不同的优惠方案:甲商场累计购物超过500元后,超出500元的部分按 90 % 收费;乙商场累计购物超过2000元后,超出2000元的部分按 80 % 收费.若学校按(1)中的方案购买,学校到哪家商场购买花费少?

来源:2021年四川省广元市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

为庆祝中华人民共和国七十周年华诞,某校举行书画大赛,准备购买甲、乙两种文具,奖励在活动中表现优秀的师生.已知购买2个甲种文具、1个乙种文具共需花费35元;购买1个甲种文具、3个乙种文具共需花费30元.

(1)求购买一个甲种文具、一个乙种文具各需多少元?

(2)若学校计划购买这两种文具共120个,投入资金不少于955元又不多于1000元,设购买甲种文具 x 个,求有多少种购买方案?

(3)设学校投入资金 W 元,在(2)的条件下,哪种购买方案需要的资金最少?最少资金是多少元?

来源:2019年黑龙江省七台河市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

2017年遂宁市吹响了全国文明城市创建决胜“集结号”.为了加快创建步伐,某运输公司承担了某标段的土方运输任务,公司已派出大小两种型号的渣土运输车运输土方.已知一辆大型渣土运输车和一辆小型渣土运输车每次共运15吨;3辆大型渣土运输车和8辆小型渣土运输车每次共运70吨.

(1)一辆大型渣土运输车和一辆小型渣土运输车每次各运土方多少吨?

(2)该渣土运输公司决定派出大小两种型号渣土运输车共20辆参与运输土方,若每次运输土方总量不小于148吨,且小型渣土运输车至少派出7辆,问该渣土运输公司有几种派出方案?

(3)在(2)的条件下,已知一辆大型渣土运输车运输花费500元 / 次,一辆小型渣土运输车运输花费300元 / 次,为了节约开支,该公司应选择哪种方案划算?

来源:2017年四川省遂宁市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同.

(1)求每件甲种、乙种玩具的进价分别是多少元?

(2)商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,求商场共有几种进货方案?

来源:2017年贵州省安顺市中考数学试卷
  • 更新:2021-04-27
  • 题型:未知
  • 难度:未知

快递公司为提高快递分拣的速度,决定购买机器人来代替人工分拣.已知购买甲型机器人1台,乙型机器人2台,共需14万元;购买甲型机器人2台,乙型机器人3台,共需24万元.

(1)求甲、乙两种型号的机器人每台的价格各是多少万元;

(2)已知甲型和乙型机器人每台每小时分拣快递分别是1200件和1000件,该公司计划购买这两种型号的机器人共8台,总费用不超过41万元,并且使这8台机器人每小时分拣快递件数总和不少于8300件,则该公司有哪几种购买方案?哪个方案费用最低,最低费用是多少万元?

来源:2018年山东省莱芜市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

某中学为打造书香校园,计划购进甲、乙两种规格的书柜放置新购进的图书,调查发现,若购买甲种书柜3个、乙种书柜2个,共需资金1020元;若购买甲种书柜4个,乙种书柜3个,共需资金1440元.

(1)甲、乙两种书柜每个的价格分别是多少元?

(2)若该校计划购进这两种规格的书柜共20个,其中乙种书柜的数量不少于甲种书柜的数量,学校至多能够提供资金4320元,请设计几种购买方案供这个学校选择.

来源:2017年四川省泸州市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

某网店销售甲、乙两种防雾霾口罩,已知甲种口罩每袋的售价比乙种口罩多5元,小丽从该网店网购2袋甲种口罩和3袋乙种口罩共花费110元.

(1)该网店甲、乙两种口罩每袋的售价各多少元?

(2)根据消费者需求,网店决定用不超过10000元购进甲、乙两种口罩共500袋,且甲种口罩的数量大于乙种口罩的 4 5 ,已知甲种口罩每袋的进价为22.4元,乙种口罩每袋的进价为18元,请你帮助网店计算有几种进货方案?若使网店获利最大,应该购进甲、乙两种口罩各多少袋,最大获利多少元?

来源:2017年山东省莱芜市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

湘潭市继2017年成功创建全国文明城市之后,又准备争创全国卫生城市.某小区积极响应,决定在小区内安装垃圾分类的温馨提示牌和垃圾箱,若购买2个温馨提示牌和3个垃圾箱共需550元,且垃圾箱的单价是温馨提示牌单价的3倍.

(1)求温馨提示牌和垃圾箱的单价各是多少元?

(2)该小区至少需要安放48个垃圾箱,如果购买温馨提示牌和垃圾箱共100个,且费用不超过10000元,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少元?

来源:2018年湖南省湘潭市中考数学试卷
  • 更新:2021-05-09
  • 题型:未知
  • 难度:未知

某花店准备购进甲、乙两种花卉,若购进甲种花卉20盆,乙种花卉50盆,需要720元;若购进甲种花卉40盆,乙种花卉30盆,需要880元.

(1)求购进甲、乙两种花卉,每盆各需多少元?

(2)该花店销售甲种花卉每盆可获利6元,销售乙种花卉每盆可获利1元,现该花店准备拿出800元全部用来购进这两种花卉,设购进甲种花卉 x 盆,全部销售后获得的利润为 W 元,求 W x 之间的函数关系式;

(3)在(2)的条件下,考虑到顾客需求,要求购进乙种花卉的数量不少于甲种花卉数量的6倍,且不超过甲种花卉数量的8倍,那么该花店共有几种购进方案?在所有的购进方案中,哪种方案获利最大?最大利润是多少元?

来源:2016年辽宁省营口市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

某班级为践行“绿水青山就是金山银山”的理念,开展植树活动.如果每人种3棵,则剩86棵;如果每人种5棵,则最后一人有树种但不足3棵.请问该班有多少学生?本次一共种植多少棵树?(请用一元一次不等式组解答)

来源:2020年四川省雅安市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

“一带一路”的战略构想为国内许多企业的发展带来了新的机遇,某公司生产 A B 两种机械设备,每台 B 种设备的成本是 A 种设备的1.5倍,公司若投入16万元生产 A 种设备,36万元生产 B 种设备,则可生产两种设备共10台.请解答下列问题:

(1) A B 两种设备每台的成本分别是多少万元?

(2)若 A B 两种设备每台的售价分别是6万元,10万元,公司决定生产两种设备共60台,计划销售后获利不低于126万元,且 A 种设备至少生产53台,求该公司有几种生产方案;

(3)在(2)的条件下,销售前公司决定从这批设备中拿出一部分,赠送给“一带一路”沿线的甲国,剩余设备全部售出,公司仍获利44万元,赠送的设备采用水路运输和航空运输两种方式,共运输4次,水路运输每次运4台 A 种设备,航空运输每次运2台 B 种设备(运输过程中产生的费用由甲国承担).直接写出水路运输的次数.

来源:2017年黑龙江省牡丹江市中考数学试卷
  • 更新:2021-04-26
  • 题型:未知
  • 难度:未知

为了推动“龙江经济带”建设,我省某蔬菜企业决定通过加大种植面积、增加种植种类,促进经济发展.2017年春,预计种植西红柿、马铃薯、青椒共100公顷(三种蔬菜的种植面积均为整数),青椒的种植面积是西红柿种植面积的2倍,经预算,种植西红柿的利润可达1万元 / 公顷,青椒1.5万元 / 公顷,马铃薯2万元 / 公顷,设种植西红柿 x 公顷,总利润为 y 万元.

(1)求总利润 y (万元)与种植西红柿的面积 x (公顷)之间的关系式.

(2)若预计总利润不低于180万元,西红柿的种植面积不低于8公顷,有多少种种植方案?

(3)在(2)的前提下,该企业决定投资不超过获得最大利润的 1 8 在冬季同时建造 A B 两种类型的温室大棚,开辟新的经济增长点,经测算,投资 A 种类型的大棚5万元 / 个, B 种类型的大棚8万元 / 个,请直接写出有哪几种建造方案?

来源:2017年黑龙江省七台河市中考数学试卷
  • 更新:2021-04-26
  • 题型:未知
  • 难度:未知

为加快复工复产,某企业需运输一批物资.据调查得知,2辆大货车与3辆小货车一次可以运输600箱;5辆大货车与6辆小货车一次可以运输1350箱.

(1)求1辆大货车和1辆小货车一次可以分别运输多少箱物资;

(2)计划用两种货车共12辆运输这批物资,每辆大货车一次需费用5000元,每辆小货车一次需费用3000元.若运输物资不少于1500箱,且总费用小于54000元.请你列出所有运输方案,并指出哪种方案所需费用最少.最少费用是多少?

来源:2020年山东省济宁市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元

(1)如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件?

(2)如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,求该公司有哪几种不同的购买方案?

来源:2017年湖北省武汉市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

某工厂有甲种原料 130 kg ,乙种原料 144 kg .现用这两种原料生产出 A B 两种产品共30件.已知生产每件 A 产品需甲种原料 5 kg ,乙种原料 4 kg ,且每件 A 产品可获利700元;生产每件 B 产品需甲种原料 3 kg ,乙种原料 6 kg ,且每件 B 产品可获利900元.设生产 A 产品 x 件(产品件数为整数件),根据以上信息解答下列问题:

(1)生产 A B 两种产品的方案有哪几种;

(2)设生产这30件产品可获利 y 元,写出 y 关于 x 的函数解析式,写出(1)中利润最大的方案,并求出最大利润.

来源:2017年湖南省郴州市中考数学试卷
  • 更新:2021-05-07
  • 题型:未知
  • 难度:未知

初中数学一元一次不等式组的应用解答题