2021年7月1日是建党100周年纪念日,在本月日历表上可以用一个方框圈出4个数(如图所示),若圈出的四个数中,最小数与最大数的乘积为65,求这个最小数(请用方程知识解答).
关于 的一元二次方程 有两个不相等的实数根.
(1)求 的取值范围;
(2)写出一个满足条件的 的值,并求此时方程的根.
已知关于x的一元二次方程 有两个实数根x1,x2.
(1)求m的取值范围;
(2)当时,求m的值.
阅读材料:用配方法求最值.已知x,y为非负实数,
∵
∴,当且仅当“x=y”时,等号成立.
示例:当x>0时,求的最小值.
解:,当,即x=1时,y的最小值为6.
(1)尝试:当x>0时,求的最小值.
(2)问题解决:随着人们生活水平的快速提高,小轿车已成为越来越多家庭的交通工具,假设某种小轿车的购车费用为10万元,每年应缴保险费等各类费用共计0.4万元,n年的保养、维护费用总和为万元.问这种小轿车使用多少年报废最合算(即:使用多少年的年平均费用最少,年平均费用=)?最少年平均费用为多少万元?
为积极响应新旧动能转换,提高公司经济效益,某科技公司近期研发出一种新型高科技设备,每台设备成本价为30万元,经过市场调研发现,每台售价为40万元时,年销售量为600台;每台售价为45万元时,年销售量为550台.假定该设备的年销售量 (单位:台)和销售单价 (单位:万元)成一次函数关系.
(1)求年销售量 与销售单价 的函数关系式;
(2)根据相关规定,此设备的销售单价不得高于70万元,如果该公司想获得10000万元的年利润,则该设备的销售单价应是多少万元?
请同学们认真阅读下面的一段文字材料,然后解答题目中提出的有关问题.
为解方程,我们可以将视为一个整体,然后设,则原方程可化为 ①
解得,,当y=1时,,∴,;
当y=4时,,∴,,∴原方程的解为=, =-,=,=-.
解答问题:
(1)填空:在由原方程得到方程①的过程中,利用_________法达到了降次的目的,体现了_________的数学思想.
(2)解方程.
已知关于 x的一元二次方程 ax 2+ bx+ c=0( a≠0)有两个实数根 x 1, x 2,请用配方法探索有实数根的条件,并推导出求根公式,证明 x 1• x 2= .
阅读材料:各类方程的解法
求解一元一次方程,根据等式的基本性质,把方程转化为 的形式.求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为解二元一次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想 转化,把未知转化为已知.
用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程 ,可以通过因式分解把它转化为 ,解方程 和 ,可得方程 的解.
(1)问题:方程 的解是 , , ;
(2)拓展:用“转化”思想求方程 的解;
(3)应用:如图,已知矩形草坪 的长 ,宽 ,小华把一根长为 的绳子的一端固定在点 ,沿草坪边沿 , 走到点 处,把长绳 段拉直并固定在点 ,然后沿草坪边沿 、 走到点 处,把长绳剩下的一段拉直,长绳的另一端恰好落在点 .求 的长.
重庆小面是重庆美食的名片之一,深受外地游客和本地民众欢迎.某面馆向食客推出经典特色重庆小面,顾客可到店食用(简称"堂食"小面),也可购买搭配佐料的袋装生面(简称"生食"小面).已知3份"堂食"小面和2份"生食"小面的总售价为31元,4份"堂食"小面和1份"生食"小面的总售价为33元.
(1)求每份"堂食"小面和"生食"小面的价格分别是多少元?
(2)该面馆在4月共卖出"堂食"小面4500份,"生食"小面2500份.为回馈广大食客,该面馆从5月1日起每份"堂食"小面的价格保持不变,每份"生食"小面的价格降低 .统计5月的销量和销售额发现:"堂食"小面的销量与4月相同,"生食"小面的销量在4月的基础上增加 ,这两种小面的总销售额在4月的基础上增加 .求 的值.
小敏与小霞两位同学解方程 的过程如下框:
小敏: 两边同除以 ,得 , 则 . |
小霞: 移项,得 , 提取公因式,得 . 则 或 , 解得 , . |
你认为他们的解法是否正确?若正确请在框内打“ ”;若错误请在框内打“ ”,并写出你的解答过程.
已知关于 的一元二次方程 .
(1)若方程有两个不相等的实数根,求 的取值范围;
(2)二次函数 的部分图象如图所示,求一元二次方程 的解.
列方程(组 解应用题
某驻村工作队,为带动群众增收致富,巩固脱贫攻坚成效,决定在该村山脚下,围一块面积为 的矩形试验茶园,便于成功后大面积推广.如图所示,茶园一面靠墙,墙长 ,另外三面用 长的篱笆围成,其中一边开有一扇 宽的门(不包括篱笆).求这个茶园的长和宽.
巴中市某楼盘准备以每平方米5000元的均价对外销售,由于有关部门关于房地产的新政策出台后,部分购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4050元的均价开盘销售,若两次下调的百分率相同,求平均每次下调的百分率.
为响应国家全民阅读的号召,某社区鼓励居民到社区阅览室借阅读书,并统计每年的借阅人数和图书借阅总量(单位:本).该阅览室在2014年图书借阅总量是7500本,2016年图书借阅总量是10800本.
(1)求该社区的图书借阅总量从2014年至2016年的年平均增长率;
(2)已知2016年该社区居民借阅图书人数有1350人,预计2017年达到1440人.如果2016年至2017年图书借阅总量的增长率不低于2014年至2016年的年平均增长率,那么2017年的人均借阅量比2016年增长 ,求 的值至少是多少?