请同学们认真阅读下面的一段文字材料,然后解答题目中提出的有关问题. 为解方程,我们可以将视为一个整体,然后设,则原方程可化为 ① 解得,,当y=1时,,∴,; 当y=4时,,∴,,∴原方程的解为=, =-,=,=-. 解答问题: (1)填空:在由原方程得到方程①的过程中,利用_________法达到了降次的目的,体现了_________的数学思想. (2)解方程.
我市某中学为了丰富校园文化生活,校学生会决定举办演讲、歌唱、绘画、舞蹈四项比赛,要求每位学生都参加,且只能参加一项比赛。围绕“你参赛的项目是什么?(只写一项)”的问题,校学生会在全校范围内随机抽取部分学生进行问卷调查,将调查问卷适合整理后绘制成如图所示的不完整的条形统计图,其中参加舞蹈比赛的人数与参加歌唱比赛的人数之比为1∶3,请你根据以上信息回答下列问题:⑴ 通过计算补全条形统计图;⑵ 在这次调查中,一共抽取了多少名学生?⑶ 如果全校有680名学生,请你估计这680名学生中参加演讲比赛的学生有多少名?
学校组织各班开展“阳光体育”活动,某班体育委员第一次到商店购买了5个毽子和8根跳绳,花费34元,第二次又购买了3个毽子和4根跳绳,花费18元。求每个毽子和每根跳绳各多少元?
⑴ ⑵ 先化简,再求值:,其中
如图,在平行四边形ABCD中,AD="4" cm,∠A=60°,BD⊥AD. 一动点P从A出发,以每秒1 cm的速度沿A→B→C的路线匀速运动,过点P作直线PM,使PM⊥AD .(1)当点P运动2秒时,设直线PM与AD相交于点E,求△APE的面积;(2)当点P运动2秒时,另一动点Q也从A出发沿A→B→C的路线运动,且在AB上以每秒1 cm的速度匀速运动,在BC上以每秒2 cm的速度匀速运动. 过Q作直线QN,使QN∥PM. 设点Q运动的时间为t秒(0≤t≤10),直线PM与QN截平行四边形ABCD所得图形的面积为S cm2.① 求S关于t的函数关系式;② 求S的最大值.
已知甲乙两种食物中维生素A和B的含量及甲乙食物的成本如下表:
现将两种食物混合成100千克的混合食品。设混合食品中甲、乙食物含量分别为x(千克)和y(千克),如果混合食品中要求维生素A不低于40000单位,B不低于28000单位(1)求x的取值范围(2)当甲、乙各取多少千克时,符合题意的混合食品成本最低?并求该最低成本价