我国古代数学著作《九章算术》中有这样一题,原文是:“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何.”意思是:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛(斛,是古代的一种容量单位),1个大桶加上5个小桶可以盛酒2斛.1个大桶、1个小桶分别可以盛酒多少斛?请解答.
习近平总书记说:"读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气".某校为提高学生的阅读品味,现决定购买获得第十届茅盾文学奖的《北上》(徐则臣著)和《牵风记》(徐怀中著)两种书共50本.已知购买2本《北上》和1本《牵风记》需100元;购买6本《北上》与购买7本《牵风记》的价格相同.
(1)求这两种书的单价;
(2)若购买《北上》的数量不少于所购买《牵风记》数量的一半,且购买两种书的总价不超过1600元.请问有哪几种购买方案?哪种购买方案的费用最低?最低费用为多少元?
小明用计算器计算 的值,其按键顺序和计算器显示结果如表:
这时他才明白计算器是先做乘法再做加法的,于是他依次按键:
从而得到了正确结果,已知 是 的3倍,则正确的结果是
A.24B.39C.48D.96
今年新冠病毒疫情初期,口罩供应短缺,某地规定:每人每次限购5只.李红出门买口罩时,无论是否买到,都会消耗家里库存的口罩一只,如果有口罩买,他将买回5只.已知李红家原有库存15只,出门10次购买后,家里现有口罩35只.请问李红出门没有买到口罩的次数是 次.
为了绿化校园,30名学生共种78棵树苗.其中男生每人种3棵,女生每人种2棵,该班男生有 人,女生有 人.根据题意,所列方程组正确的是
A. B.
C. D.
对于任意一个四位数 ,若千位上的数字与个位上的数字之和是百位上的数字与十位上的数字之和的2倍,则称这个四位数 为"共生数".例如: ,因为 ,所以3507是"共生数"; ,因为 ,所以4135不是"共生数".
(1)判断5313,6437是否为"共生数"?并说明理由;
(2)对于"共生数" ,当十位上的数字是千位上的数字的2倍,百位上的数字与个位上的数字之和能被9整除时,记 .求满足 各数位上的数字之和是偶数的所有 .
《九章算术》是中国传统数学的重要著作,书中有一道题"今有五雀六燕,集称之衡,雀俱重,燕俱轻;一雀一燕交而处,衡适平;并燕雀重一斤.问:燕雀一枚,各重几何?"译文:"五只雀、六只燕,共重1斤(古时1斤 两).雀重燕轻,互换其中一只,恰好一样重,问:每只雀、燕重量各为多少?"设雀重 两,燕重 两,可列出方程组
A. |
|
B. |
|
C. |
|
D. |
|
为响应“把中国人的饭碗牢牢端在自己手中”的号召,确保粮食安全,优选品种,提高产量,某农业科技小组对 , 两个玉米品种进行实验种植对比研究.去年 、 两个品种各种植了10亩.收获后 、 两个品种的售价均为 元/kg,且 品种的平均亩产量比A品种高100千克, 、 两个品种全部售出后总收入为 元.
(1)求 、 两个品种去年平均亩产量分别是多少千克?
(2)今年,科技小组优化了玉米的种植方法,在保持去年种植面积不变的情况下,预计A、B两个品种平均亩产量将在去年的基础上分别增加 和 .由于B品种深受市场欢迎,预计每千克售价将在去年的基础上上涨 ,而A品种的售价保持不变, 、 两个品种全部售出后总收入将增加 .求a的值.
某村经济合作社决定把22吨竹笋加工后再上市销售,刚开始每天加工3吨,后来在乡村振兴工作队的指导下改进加工方法,每天加工5吨,前后共用6天完成全部加工任务,问该合作社改进加工方法前后各用了多少天?
某学校计划用17件同样的奖品全部用于奖励在“扫黑除恶宣传”活动中表现突出的班级,一等奖奖励3件,二等奖奖励2件,则分配一、二等奖个数的方案有
A.1种B.2种C.3种D.4种
上网流量、语音通话是手机通信消费的两大主体,目前,某通信公司推出消费优惠新招 “定制套餐”,消费者可根据实际情况自由定制每月上网流量与语音通话时间,并按照二者的阶梯资费标准缴纳通信费.下表是流量与语音的阶梯定价标准.
流量阶梯定价标准 |
|
使用范围 |
阶梯单价(元 |
|
|
|
0.07 |
|
|
语音阶梯定价标准 |
|
使用范围 |
阶梯资费(元 分钟) |
分钟 |
0.15 |
分钟 |
0.12 |
分钟 |
|
【小提示:阶梯定价收费计算方法,如600分钟语音通话费 = 0 . 15 × 500 + 0 . 12 × ( 600 − 500 ) = 87 元】
(1)甲定制了 的月流量,花费48元;乙定制了 的月流量,花费120.4元,求 , 的值.(注
(2)甲的套餐费用为199元,其中含 的月流量;丙的套餐费用为244.2元,其中包含 的月流量,二人均定制了超过1000分钟的每月通话时间,并且丙的语音通话时间比甲多300分钟,求 的值.