我国古代数学著作《九章算术》中有这样一题,原文是:“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何.”意思是:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛(斛,是古代的一种容量单位),1个大桶加上5个小桶可以盛酒2斛.1个大桶、1个小桶分别可以盛酒多少斛?请解答.
如图,△ABC是等边三角形,CE是外角平分线,点D在AC上,连结BD并延长与CE交于点E。 (1)求证:△ABD∽△CED; (2)若AB=6,AD=2CD,求BE的长。
某学生参加社会实践活动,在景点P处测得景点B位于南偏东方向,然后沿北偏东方向走100米到达景点A,此时测得景点B正好位于景点A的正南方向,求景点A与景点B之间的距离。
有两个可以自由转动的质地均匀转盘都被分成了3个全等的扇形,在每一扇形内均标有不同的自然数,如图所示,转动转盘,两个转盘停止后观察并记录两个指针所指扇形内的数字(若指针停在扇形的边线上,当作指向上边的扇形)。 (1)用列表法或画树形图法求出同时转动两个转盘一次的所有可能结果; (2)同时转动两个转盘一次,求“记录的两个数字之和为7”的概率。
如图,在4×4的正方形方格中,△ABC的顶点都在边长为1的小正方形的顶点上。请你在图中画出一个与△ABC相似的△DEF,使得△DEF的顶点都在边长为1的小正方形的顶点上,且△ABC与△DEF的相似比为1∶2。
计算: