观察下列等式:
12×231=132×21,
13×341=143×31,
23×352=253×32,
34×473=374×43,
62×286=682×26,
……
以上每个等式中两边数字是分别对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”.
(1)根据上述各式反映的规律填空,使式子成为“数字对称等式”:
①52× = ×25;
② ×396=693× .
(2)设这类等式左边两位数的十位数字为,个位数字为,且2≤≤9,写出表示“数字对称等式”一般规律的式子(含、),并说明理由.
读一读:
式子“1+2+3+4+5+…+100”表示从1开始的100个连续自然数的和.
由于上述式子比较长,书写也不方便,为了简便起见,我们可以将“1+2+3+4+5+…+100”表示为,这里“”是求和符号.例如:“1+3+5+7+9+…+99”(即从1开始的100以内连续奇数的和)可表示为;又如“13+23+33+43+53+63+73+83+93+103”可表示为. 同学们,通过对以上材料的阅读,请解答下列问题:
(1)“2+4+6+8+10+…+100”(即从2开始的100以内的连续偶数的和)用求和符号可表示为 .
(2)计算:的值
一辆货车从超市出发,向东走了2到达小刚家,继续向东走了3到达小红家,又向西走了9到达小英家,最后回到超市.
(1)请以超市为原点,以向东方向为正方向,用1个单位长度表示1,画出数轴,在数轴上表示出小刚家、小红家、小英家的位置;
(2)小英家距小刚家有多远?
(3)货车一共行驶了多少千米?
如图,数轴的单位长度为1.
(1)如果点B,D表示的数互为相反数,那么图中点A、点D表示的数分别是 、 ;
(2)当点B为原点时,在数轴上是否存在点M,使得点M到点A的距离是点M到点D的距离的2倍,若存在,请求出此时点M所表示的数;若不存在,说明理由;
(3) 在(2)的条件下,点A、点C分别以2个单位长度/秒和0.5个单位长度同时向右运动,同时点P从原点出发以3个单位长度/秒的速度向左运动,当点A与点C之间的距离为3个单位长度时,求点P所对应的数是多少?
(1)在下列横线上用含有a,b的代数式表示相应图形的面积.
①__________②__________③__________④__________
(2)请在图④画出拼图并通过拼图,你发现前三个图形的面积与第四个图形面积之间有什么关系?请用数学式子表达:__________.
(3)利用(2)的结论计算的值.
已知:a与b是互为相反数,c与d互为倒数,m是绝对值最小的数,n是最大的负整数,则:
(1)a+b= ,= ,m= ,n= ;
(2)求:的值.
(本题12分)意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,…,其中从第三个数起,每一个数都等于它前面两个数的和.现以这组数中的各个数作为正方形的边长值构造正方形:
再分别依次从左到右取2个、3个、4个、5个…正方形拼成如下长方形并记为①、②、③、④、 …相应长方形的周长如下表所示:
仔细观察图形,上表中的x= ,y= .
若按此规律继续作长方形,则序号为⑧的长方形周长是 .
在某次抗险救灾中,消防官兵的冲锋舟沿东西方向的河流抢救灾民,早晨从A地出发,晚上到达B 地,约定向东为正方向,当天的航行路程记录如下(单位:千米):
+12,﹣9,+8,﹣7,+11,﹣6,+10,﹣5.
(1)B地在A地什么方向,距离A地多少千米?
(2)若冲锋舟每千米耗油0.5升,油箱容量为30升,求途中还需补充多少升油.
把几个数用大括号括起来,中间用逗号断开,如:、,我们称之为集合,其中的数称其为集合的元素.如果一个集合满足:当有理数是集合的元素时,有理数10也必是这个集合的元素,这样的集合我们称为“好的集合”.例如集合{10,0}就是一个“好的集合”.
(1)集合 (填“是”或“不是”)“好的集合”.
(2)请你再写出两个好的集合(不得与上面出现过的集合重复).
(3)在所有“好的集合”中,元素个数最少的集合是 .
(本题4分)观察图形,解答问题:
(1)按下表已填写的形式填写表中的空格:
|
图① |
图② |
图③ |
三个角上三个数的积 |
1×(-1)×2=-2 |
(-3)×(-4)×(-5)=-60 |
|
三个角上三个数的和 |
1+(-1)+2=2 |
(-3)+(-4)+(-5)=-12 |
|
积与和的商 |
(-2)÷2=-1 |
|
|
(2)请用你发现的规律求出图④中的数x和图⑤中的数y.
将一些相同的“○”按如图所示的规律依次摆放,观察每个“龟图”中的“○”的个数,则第10个“龟图”中的“○”的个数为 .
观察下列一组数:1,2,2,3,3,3,4,4,4,4,5,5,5,5,5,6,…其中每个数n都连
续出现n次,那么这一组数的第119个数是 .
2015年9月30日杭州西湖景区某公园人流量为7万,每张门票80元,“十一黄金周”景区迎来了旅游高峰期,游客从各个省市来到杭州,该公园统计:十一黄金周期间,游客人数与前一天相比,增加和减少的情况如下表:(记增加为正).
日期 |
1号 |
2号 |
3号 |
4号 |
5号 |
6号 |
7号 |
人数(万人) |
+5 |
-1.2 |
+5.7 |
-0.6 |
+1.8 |
-2.9 |
-2.5 |
(1)10月2号该公园的人流量是多少万人?
(2)“十一黄金周”期间,人流量最多和最少分别出现在哪一天?
(3)该公园的所有门票收入均要缴纳百分之五的税,求“十一黄金周”期间,该公园的实际收入.