如图,边长为1的正三角形 放置在边长为2的正方形内部,顶点 在正方形的一个顶点上,边 在正方形的一边上,将 绕点 顺时针旋转,当点 落在正方形的边上时,完成第1次无滑动滚动(如图 ;再将 绕点 顺时针旋转,当点 落在正方形的边上时,完成第2次无滑动滚动(如图 , ,每次旋转的角度都不大于 ,依次这样操作下去,当完成第2016次无滑动滚动时,点 经过的路径总长为 .
如图,在平面直角坐标系中, ,四边形 , , 都是菱形,点 , , 在 轴上,点 , , 在 上, 轴, ,则第 个菱形 的面积是 .
如图,面积为1的等腰直角△ , ,且 为斜边在△ ,外作等腰直角△ ,以 为斜边在△ ,外作等腰直角△ ,以 为斜边在△ ,外作等腰直角△ , 连接 , , , 分别与 , , , 交于点 , , , 按此规律继续下去,记△ 的面积为 ,△ 的面积为 ,△ 的面积为 , △ 的面积为 ,则 (用含正整数 的式子表示).
如图, 的面积为 .点 , , , , 是边 的 等分点 ,且 为整数),点 , 分别在边 , 上,且 ,连接 , , , , ,连接 , , , , ,线段 与 相交于点 ,线段 与 相交于点 ,线段 与 相交于点 , ,线段 与 相交于点 ,则△ ,△ ,△ , ,△ 的面积和是 .(用含有 与 的式子表示)
如图, 中, , .以 为直角边向外作等腰直角三角形 ,以 为直角边向外作等腰直角三角形 ,以 为直角边向外作等腰直角三角形 , ,连接 , , , ,分别与 , , , 交于点 , , , ,按此规律继续下去, 的面积记为 ,△ 的面积记为 ,△ 的面积记为 , ,则 .
如图,等边△ 的周长为1,作 于 ,在 的延长线上取点 ,使 ,连接 ,以 为边作等边△ ;作 于 ,在 的延长线上取点 ,使 ,连接 ,以 为边作等边△ ; 且点 , , , 都在直线 同侧,如此下去,则△ ,△ ,△ , ,△ 的周长和为 . ,且 为整数)
如图,观察各图中小圆点的摆放规律,并按这样的规律继续摆放下去,则第10个图形中小圆点的个数为 .
如图, ,点 是 平分线上一点, ,作 , ,垂足分别为点 , ,以 为边作等边三角形 ;作 , ,垂足分别为点 , ,以 为边作等边三角形 ;作 , ,垂足分别为点 , ,以 为边作等边三角形 ; 按这样的方法继续下去,则△ 的面积为 (用含正整数 的代数式表示).
如图,在△ 中, , ,过点 作 ,垂足为点 ,过点 作 交 于点 ,得到△ ;过点 作 ,垂足为点 ,过点 作 交 于点 ,得到△ ;过点 作 ,垂足为点 ,过点 作 交 于点 ,得到△ ; 按照上面的作法进行下去,则△ 的面积为 .(用含正整数 的代数式表示)
如图,已知 ,以 为直角边作等腰直角三角形 ,再以 为直角边作等腰直角三角形 ,如此下去,则线段 的长度为 .
如图,每个图案都由大小相同的正方形组成,按照此规律,第 个图案中这样的正方形的总个数可用含 的代数式表示为 .
如图,边长为4的等边 , 边在 轴上,点 在 轴的正半轴上,以 为边作等边 ,边 与 交于点 ,以 为边作等边△ ,边 与 交于点 ,以 为边作等边△ ,边 与 交于点 , ,依此规律继续作等边△ ,记△ 的面积为 ,△ 的面积为 ,△ 的面积为 , ,△ 的面积为 ,则 . ,且 为整数)
如图,直线 的解析式是 ,直线 的解析式是 ,点 在 上, 的横坐标为 ,作 交 于点 ,点 在 上,以 , 为邻边在直线 , 间作菱形 ,分别以点 , 为圆心,以 为半径画弧得扇形 和扇形 ,记扇形 与扇形 重叠部分的面积为 ;延长 交 于点 ,点 在 上,以 , 为邻边在 , 间作菱形 ,分别以点 , 为圆心,以 为半径画弧得扇形 和扇形 ,记扇形 与扇形 重叠部分的面积为 按照此规律继续作下去,则 .(用含有正整数 的式子表示)