一座楼梯的示意图如图所示,要在楼梯上铺一条地毯.
(1)地毯至少需多少长?(用关于a,h的代数式表示)
(2)若楼梯的宽为b,则地毯的面积为多少?
(3)当a=5m,b=1.2m,h=3m时,则地毯的面积是多少m2
为了节约用水,某市规定三口之家每月标准用水量为15立方米,超过部分加价收费,假设不超过部分水费为1.5元/立方米,超过部分水费为3元/立方米。
(1)当每月用水量为a立方米时,请用代数式分别表示这家按标准用水量和超出标准用水时各应缴纳的水费;
(2)如果甲、乙两家用水量分别为10立方米和20立方米,那么甲、乙两家该月应各交多少水费?
(3)当丁家本月交水费46.5元时,那么丁家该月用水多少立方米?
某城市为了鼓励居民节约用水,对自来水用户按如下标准收费:若每月每户用水的最高标准为10吨,超过标准的部分加价收费,不超过10吨,每吨按2.9元收费,超过10吨的部分按每吨4元收费,
(1)某用户3月份用水x吨,请用含x的代数式表示应交水费
(2)求当x=25时的水费.
小亮家购买了一套保障房,准备将地面铺上地砖,地面结构如图所示,根据图中的数据(单位:),解答下列问题:
(1)写出用含x、y的代数式表示地面的总面积(结果要化简);
(2)若卫生间和厨房的面积之和是卧室面积的,且地面总面积是卫生间面积的15倍,铺12地砖的平均费用为80元,求铺地砖的总费用为多少元?
阅读下面的材料:
按照一定顺序排列着的一列数称为数列,数列中的每一个数叫做这个数列的项.排在第一位的数称为第一项,记为,排在第二位的数称为第二项,记为,依此类推,排在第位的数称为第项,记为.所以,数列的一般形式可以写成:,,,,,.
一般地,如果一个数列从第二项起,每一项与它前一项的差等于同一个常数,那么这个数列叫做等差数列,这个常数叫做等差数列的公差,公差通常用表示.如:数列1,3,5,7,为等差数列,其中,,公差为.
根据以上材料,解答下列问题:
(1)等差数列5,10,15,的公差为 ,第5项是 .
(2)如果一个数列,,,,,是等差数列,且公差为,那么根据定义可得到:,,,,,.
所以
,
,
由此,请你填空完成等差数列的通项公式: .
(3)是不是等差数列,,的项?如果是,是第几项?
某市出租车收费标准是:起步价10元,可乘3千米;3千米到5千米,每千米1.3元;超过5千米,每千米2.4元。
(1)若某人乘坐了()千米的路程,则他应支付的费用是多少?
(2)若某人乘坐的路程为6千米,那么他应支付的费用是多少?
如图,将边长为 的正方形纸板沿虚线剪成两个小正方形和两个矩形,拿掉边长为 的小正方形纸板后,将剩下的三块拼成新的矩形.
(1)用含 或 的代数式表示拼成矩形的周长;
(2) , ,求拼成矩形的面积.
如果关于的单项式与单项式是同类项,并且,当m 的倒数是-1,n的相反数是时,求的值。
某服装厂生产一种西装和领带,西装每套定价200元,领带每条定价40元.厂方在开展促销活动期间,向客户提供两种优惠方案:
①买一套西装送一条领带;
②西装和领带都按定价的90%付款.
现某客户要到该服装厂购买西装20套,领带条(>20).
(1)若该客户按方案①购买,需付款________元(用含的代数式表示);若该客户按方案②购买,需付款________元(用含的代数式表示).
(2)若=30,通过计算说明此时按哪种方案购买较为合算?
比较 与 的大小.
(1)尝试(用“ ”,“ ”或“ ”填空)
①当 时, ;
②当 时, ;
③当 时, .
(2)归纳:若 取任意实数, 与 有怎样的大小关系?试说明理由.
某自行车厂计划每天平均生产n辆自行车,而实际产量与计划产量相比有出入.下表记录了某周五个工作日每天实际产量情况(超过计划产量记为正、少于计划产量记为负):
星期 |
一 |
二 |
三 |
四] |
五 |
实际生产量 |
+5 |
﹣2 |
﹣4 |
+13 |
﹣3 |
(1)用含n的代数式表示本周前三天生产自行车的总数;
(2)该厂实行每日计件工资制,每生产一辆车可得60元,若超额完成任务,则超过部分每辆另奖15元;少生产一辆扣20元,当n=100时,那么该厂工人这一周的工资总额是多少元?
(3)若将上面第(2)问中“实行每日计件工资制”改为“实行每周计件工资制”,其他条件不变,当n=100时,在此方式下这一周工人的工资与按日计件的工资哪一个更多?请说明理由.
已知关于x的方程 .
(1)求证:方程总有两个不相等的实数根;
(2)已知方程的一个根为 ,求代数式 的值(要求先化简再求值).