重百商场正销售某品牌的一款等离子宽屏幕电视机,年初时售价定为元,3月份售价降低了元.由于伦敦奥运会的举行,8月份销售看好,故商场决定将售价在3月份的基础上上涨10%.奥运会结束后,由于销售不畅,故商场决定将售价在8月份的基础上下调10%.(1)请用代数式表示该款等离子宽屏幕电视机现在的价格;(2)若年初时售价定为6500元,3月初售价降低了500元,那么该款等离子宽屏幕电视机现在的价格是多少元?
(贵港)如图,一次函数的图象与反比例函数的图象交于点A和点B(﹣2,n),与x轴交于点C(﹣1,0),连接OA. (1)求一次函数和反比例函数的解析式; (2)若点P在坐标轴上,且满足PA=OA,求点P的坐标.
(崇左)如图,在平面直角坐标系中,点M的坐标是(5,4),⊙M与y轴相切于点C,与x轴相交于A、B两点. (1)则点A、B、C的坐标分别是A(__,__),B(__,__),C(__,__); (2)设经过A、B两点的抛物线解析式为,它的顶点为F,求证:直线FA与⊙M相切; (3)在抛物线的对称轴上,是否存在点P,且点P在x轴的上方,使△PBC是等腰三角形.如果存在,请求出点P的坐标;如果不存在,请说明理由.
(崇左)一块材料的形状是锐角三角形ABC,边BC=120mm,高AD=80mm,把它加工成正方形零件如图1,使正方形的一边在BC上,其余两个顶点分别在AB、AC上. (1)求证:△AEF∽△ABC; (2)求这个正方形零件的边长; (3)如果把它加工成矩形零件如图2,问这个矩形的最大面积是多少?
(北海)如图1所示,已知抛物线的顶点为D,与x轴交于A、B两点,与y轴交于C点,E为对称轴上的一点,连接CE,将线段CE绕点E按逆时针方向旋转90°后,点C的对应点C′恰好落在y轴上. (1)直接写出D点和E点的坐标; (2)点F为直线C′E与已知抛物线的一个交点,点H是抛物线上C与F之间的一个动点,若过点H作直线HG与y轴平行,且与直线C′E交于点G,设点H的横坐标为m(0<m<4),那么当m为何值时,=5:6? (3)图2所示的抛物线是由向右平移1个单位后得到的,点T(5,y)在抛物线上,点P是抛物线上O与T之间的任意一点,在线段OT上是否存在一点Q,使△PQT是等腰直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由.
(北海)如图,AB、CD为⊙O的直径,弦AE∥CD,连接BE交CD于点F,过点E作直线EP与CD的延长线交于点P,使∠PED=∠C. (1)求证:PE是⊙O的切线; (2)求证:ED平分∠BEP; (3)若⊙O的半径为5,CF=2EF,求PD的长.