重百商场正销售某品牌的一款等离子宽屏幕电视机,年初时售价定为元,3月份售价降低了元.由于伦敦奥运会的举行,8月份销售看好,故商场决定将售价在3月份的基础上上涨10%.奥运会结束后,由于销售不畅,故商场决定将售价在8月份的基础上下调10%.
(1)请用代数式表示该款等离子宽屏幕电视机现在的价格;
(2)若年初时售价定为6500元,3月初售价降低了500元,那么该款等离子宽屏幕电视机现在的价格是多少元?
某市为了节约用水,对自来水的收费标准作如下规定:每月每户用水不超过10吨的部分,按2元/吨收费;超过10吨的部分按2.5元/吨收费.
(1)若黄老师家5月份用水16吨,问应交水费多少元?
(2)若黄老师家7月用水a吨,问应交水费多少元?(用a的代数式表示)
某市区自2014年1月起,居民生活用水开始实行阶梯式计量水价,该阶梯式计量水价分为三级(如下表所示):
月用水量(吨) |
水价(元/吨) |
第一级 20吨以下(含20吨) |
1.6 |
第二级 20吨﹣30吨(含30吨) |
2.4 |
第三级 30吨以上 |
3.2 |
例:某用户的月用水量为32吨,按三级计量应缴水费为:
1.6×20+2.4×10+3.2×2=62.4(元)
(1)如果甲用户的月用水量为12吨,则甲需缴的水费为 元;
(2)如果乙用户缴的水费为39.2元,则乙月用水量 吨;
(3)如果丙用户的月用水量为a吨,则丙用户该月应缴水费多少元?(用含a的代数式表示,并化简)
某商场销售一种西装和领带,西装每套定价1000元,领带每条定价200元.“国庆节”
期间商场决定开展促销活动,活动期间向客户提供两种优惠方案.
方案一:买一套西装送一条领带;
方案二:西装和领带都按定价的90%付款.
现某客户要到该商场购买西装20套,领带x条(x>20).
(1)若该客户按方案一购买,需付款 元.(用含x的代数式表示)
若该客户按方案二购买,需付款 元.(用含x的代数式表示)
(2)若x=30,通过计算说明此时按(1)哪种方案购买较为合算?
(3)当x=30时,你能给出一种更为省钱的购买方案吗?试写出你的购买方法.
如图,长方形的长为,宽为,
(1)用含、的代数式表示右图阴影部分的面积S阴影.
(2)当a=5,b=2时,求S阴影.(取3.14)
如图,平面内有公共端点的6条射线O
A.O | B.O | C.O | D.OE、OF,按照图中的规律,从射线OA开始,按照逆时针方向,依次在射线上画点表示1,2,3,4,5,6,7,… |
(1)根据图中规律,表示“19”的点在射线 上;
(2)按照图中规律推算,表示“2014”的点在射线 上;
(3)请你写出在射线OC上表示的数的规律(用含的代数式表示) .
某餐厅中,一张桌子可坐6人,有以下两种摆放方式:
(1)当有张桌子时,两种摆放方式各能坐多少人?
(2)一天中午餐厅要接待98位顾客共同就餐,但餐厅只有25张这样的餐桌,若你是这个餐厅的经理,你打算选择哪种方式来摆放餐桌,为什么?
某服装厂生产一种西装和领带,西装每套定价200元,领带每条定价40元.厂方在开展促销活动期间,向客户提供两种优惠方案:
①买一套西装送一条领带;
②西装和领带都按定价的90%付款.
现某客户要到该服装厂购买西装20套,领带x条(x>20).
(1)若该客户按方案①购买,需付款 元(用含x的代数式表示);
若该客户按方案②购买,需付款 元(用含x的代数式表示);
(2)若x=30,通过计算说明此时按哪种方案购买较为合算?
扬州万家福商场将进货价80元的某品牌童装,以120元的销售价售出,平均每天能售出20件.则单件利润为120-80=40元,每天的盈利为40×20=800元.为了迎接“六一”儿童节,商场决定采取适当的降价措施.经调査,如果每件童装降价1元,那么平均每天就可多售出2件.(盈利=单件利润×销售量)
(1)若每件童装的销售价下降2元,则:
①降价后,每件童装的销售价为______________元;
②降价后,每件童装的利润为______________元;
③降价后,商场平均每天的销售量为__________________件.
(2)若设每件童装的销售价下降a元,试用含a的代数式填空:
①降价后,每件童装的销售价为______________元;
②降价后,每件童装的利润为______________元;
③降价后,商场平均每天的销售量为__________________件.
(3)如果商场要想平均每天销售这种童装盈利1200元.商场经理甲说“在原售价每件120元的基础上再下降20元,可以完成任务”,商场经理乙说“不用降那么多,在原售价每件120元的基础上再下降10元就可以了”,试判断经理甲与乙的说法是否正确,并说明理由.
操作与思考:
操作:将长为1,宽为的长方形纸片(),如图那样折一下,剪下一个边长等于长方形宽度的正方形(称为第一次操作);再把剩下的长方形如图那样折一下,剪下一个边长等于此时长方形宽度的正方形(称为第二次操作).如此反复操作下去,若在第n次操作后剩下的长方形是正方形,则操作终止.
思考:
(1)第一次操作后,剩下的长方形的边长分别为 、 .(用含的式子表示)
(2)如果第二次操作后剩下的长方形恰好是正方形,则的值是 .
(3)第三次操作后,若剩下的长方形恰好是正方形,试求的值.
一个三角形的第一条边长为(x+2)cm,第二条边长比第一条边长小5cm,第三条边长是第二条边长的2倍.
(1)用含x的代数式表示这个三角形的周长;
(2)计算当x为6cm时这个三角形的周长.
有一长为240米的圆形跑道,小明和他的小狗同时从跑道的点P处出发沿顺时针方向跑步.已知小明的速度为4米/秒,小狗的速度为12米/秒.跑步的时间记为秒.在跑步过程中,小明和他的小狗之间相距(取两者之间较短一段圆弧跑道的长度)为米.
(1)当秒和秒时,分别求的值?
(2)当时,请用含的代数式表示.
(3)当时,请用含的代数式表示.(可直接写出结果)
某空调器销售商,今年四月份销出空调台,五月份销售空调比四月份的2倍多1台,六月份销售空调比前两个月的总和的4倍少15台.
(1)用代数式表示该销售商今年第二季度共销售空调多少台?
(2)当四月份销出空调为111台时,求第二季度销售的空调总数.