初中数学

如图,抛物线y轴交于A点,过点A的直线与抛物线交于另一点B,过点BBCx轴,垂足为点C(3,0).
求直线AB的函数关系式;
动点P在线段OC上从原点出发以每秒一个单位的速度向C移动,过点PPNx轴,交直线AB于点M,交抛物线于点N. 设点P移动的时间为t秒,MN的长度为s个单位,求st的函数关系式,并写出t的取值范围;
设在(2)的条件下(不考虑点P与点O,点C重合的情况),连接CMBN,当t为何值时,四边形BCMN为平行四边形?问对于所求的t值,平行四边形BCMN是否菱形?请说明理由.

来源:
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中有一矩形ABCO,B点的坐标为(12,6),点C、A在坐标轴上.⊙A、⊙P的半径均为1,点P从点C开始在线段CO上以1单位/秒的速度向左运动,运动到点O处停止.与此同时,⊙A的半径每秒钟增大2个单位,当点P停止运动时,⊙A的半径也停止变化.设点P运动的时间为t秒.
在0<t<12时,设△OAP的面积为s,试求s与t的函数关系式.并求出当t为何值时,s为矩形ABCO面积的
在点P的运动过程中,是否存在某一时刻,⊙A与⊙P相切,若存在求出点P的坐标,若不存在,说明理由.

来源:
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

平面直角坐标系中,顺次连结(-2,1),(-2,-1),(2,-2),(2,3)各点,你会得到
一个什么图形?试求这个图形的面积.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图11,正比例函数的图像与一次函数的图像交于点A(m,2), 一次函数图像经过点B , 与y轴的交点为C与轴的交点为D.

(1)求一次函数解析式;
(2)求C点的坐标;
(3)求△AOD的面积。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

某企业信息部进行市场调研发现:
信息一:如果单独投资A种产品,所获利润yA(万元)与投资金额x(万元)之间存在某种关系的部分对应值如下表:

x(万元)
1
2
2.5
3
5
yA(万元)
0.4
0.8
1
1.2
2

信息二:如果单独投资B种产品,则所获利润yB(万元)与投资金额x(万元)之间存在二次函数关系:yB=ax2+bx,且投资2万元时获利润2.4万元,当投资4万元时,可获利润3.2万元.
(1)求出yB与x的函数关系式.
(2)从所学过的一次函数、二次函数、反比例函数中确定哪种函数能表示yA与x之间的关系,并求出yA与x的函数关系式.
(3)如果企业同时对A、B两种产品共投资15万元,请设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少?

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数,试研究该函数的性质.

来源:
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

每个小方格都是边长为1个单位长度的小正方形,菱形OABC在平面直角坐标系中的位置如图所示。

(1)将菱形OABC先向右平移4个单位,再向上平移2个单位,得到菱形O1A1B1C1,请画出菱形O1A1B1C1;
(2)将菱形OABC绕原点O顺时针旋转90º,得到菱形OA2B2C2,请画出菱形OA2B2C2,并写出点A2、B2、C2三点的坐标

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,四边形ABCD的四个顶点的坐标分别是A(1,3)、
B(2,2)、C(2,1),D(3,3).

(1)以原点O为位似中心,相似比为2,将图形放大,画出符合要求的位似四边形;
(2)在(1)的前提下,写出点A的对应点坐标A′

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,A(-3,0),点C在y轴的正半轴上,BC∥x轴,且BC=5,AB交y轴于点D,OD=

(1)求出点C的坐标;
(2)过A、C、B三点的抛物线与x轴交于点E,连接BE.若动点M从点A出发沿x轴向x轴正方向运动,同时动点N从点E出发,在直线EB上作匀速运动,两个动点的运动速度均为每秒1个单位长度,请问当运动时间t为多少秒时,△MON为直角三角形?

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

某工厂有甲、乙两个蓄水池,将甲池中的水以每小时5立方米的速度注入乙池,甲、乙两个蓄水池中水的深度y(米)与注水时间x(时)之间的函数图象如图所示,结合图象回答下列问题:

(1)分别求出甲、乙两个蓄水池中水的深度y(米)与注水时间x(时)之间的函数关系式(不写自变量x的取值范围);
(2)算出注水多长时间后甲、乙两个蓄水池水的深度相同?  
(3)当两个蓄水池水深相同时,水深是多少?并求出甲蓄水池刚开始里面的蓄水量是多少立方米?

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知点P(x,y)是第一象限内的一个动点,且满足xy="4. " 请先在所给的平面直角坐标系中画出函数的图象,该图象与x轴交于点A,然后解答下列问题:

(1)利用所画图象,求当-1≤y≤3时x的取值范围;
(2)若点P正好也在直线上,求点P的坐标;
(3)设△OPA的面积为S,求S关于点P的横坐标x的函数解析式.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,A、B两点的坐标分别是A、B

(1)求△OAB的面积;
(2)若过A、B两点的直线解析式为,求的值.
(本小题结果保留小数点后一位)

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

初中数学计算器—基础知识解答题