相距很近的平行板电容器,在两板中心各开有一个小孔,如图甲所示,靠近A板的小孔处有一电子枪,能够持续均匀地发射出电子,电子的初速度为,质量为m,电量为-e ,在AB 两板之间加上图乙所示的交变电压,其中0<k<1,;紧靠B 板的偏转电场电压也等于U0,板长为L,两板间距为d,距偏转极板右端处垂直放置很大的荧光屏PQ。不计电子的重力和它们之间的相互作用,电子在电容器中的运动时间可以忽略不计。
(1)试求在0—kT 与kT-T 时间内射出B 板电子的速度各多大?(结果用U0、e、m表示)
(2)在0—T 时间内,荧光屏上有两个位置会发光,试求这两个发光点之间的距离。(结果用L、d 表示,)
(3)撤去偏转电场及荧光屏,当k 取恰当的数值时,使在0—T 时间内通过了电容器B 板的所有电子,能在某一时刻形成均匀分布的一段电子束,求k 值。
如图所示质量为m=1kg的滑块(可视为质点)由斜面上P点以初动能EK0=20J沿斜面向上运动,当其向上经过Q点时动能EKQ=8J,机械能的变化量ΔE机=-3J,斜面与水平夹角α=37°。PA间距离l0=0.625m,当滑块向下经过A点并通过光滑小圆弧后滑上质量M=0.25kg的木板 (经过小圆弧时无机械能损失),滑上木板瞬间触发一感应开关使木板与斜面底端解除锁定(当滑块滑过感应开关时,木板与斜面不再连接),木板长L=2.5m,木板与滑块间动摩擦因数µ1=0.20,木板与地面的动摩擦因数µ2=0.10。滑块带动木板在地面上向右运动,当木板与右侧等高光滑平台相碰时再次触发感应开关使木板与平台锁定。滑块沿平台向右滑上光滑的半径R=0.1m的光滑圆轨道(滑块在木板上滑行时,未从木板上滑下)。
求:①物块与斜面间摩擦力大小;
②木块经过A点时的速度大小v1;
③为保证滑块通过圆轨道最高点,AB间距离d应满足什么条件?
(14分)如图所示,质量为m的小物块放在长直水平面上,用水平细线紧绕在半径为R、质量为2m的薄壁圆筒上.t=0时刻,圆筒在电动机带动下由静止开始绕竖直中心轴转动,转动中角速度满足ω=β1t(β1为已知常数),物块和地面之间动摩擦因数为μ.求:
(1)物块做何种运动?请说明理由.
(2)物块运动中受到的拉力.
(3)从开始运动至t=t1时刻,电动机做了多少功?
(4)若当圆筒角速度达到ω0时,使其减速转动,并以此时刻为t=0,且角速度满足ω=ω0-β2t(式中ω0、β2均为已知),则减速多长时间后小物块停止运动?
在竖直平面内,以虚线为界分布着如图所示的匀强电场和足够大的匀强磁场,各区域磁场的磁感应强度大小均为,匀强电场方向竖直向下,大小为,倾斜虚线与轴之间的夹角为60°,竖直虚线与轴的交点为点.一带正电的粒子从点以速度与轴成30o角射入左侧磁场,划过一段圆弧后粒子穿过倾斜虚线进入匀强电场,经电场偏转后恰好从A点射出进入右侧轴下方磁场区域.已知带正电粒子的电荷量为,质量为(粒子重力忽略不计).求:
(1)带电粒子通过倾斜虚线时的位置坐标;
(2)粒子到达点时速度的大小和方向以及匀强电场的宽度;
(3)若在粒子从点出发的同时,一不带电的粒子从点以速度沿轴正方向匀速运动,最终两粒子相碰,求粒子速度的可能值.
平时擦玻璃时,我们经常会用到如图甲所示的“魔力刷”.使用时,两个一样的刷子分别位于玻璃窗户玻璃板的两侧,两刷子靠磁铁的吸引力吸在玻璃上,当移动其中一块刷子时,另一块刷子会跟到移动,达到同时清洁玻璃内外侧的目的.已知:某种品牌玻璃刷的每个刷子的质量都为,与玻璃的滑动摩擦因数均为,且最大静摩擦力等于滑动摩擦力,重力加速度取.
(1)将其中一个刷子用与竖直方向成的推力压在竖直玻璃上,如题9图乙所示,现要把刷子沿竖直方向向上推动,求推力的最小值
(2)把两个刷子对齐分别放在竖直玻璃板的两侧,如题9图丙所示,现用与竖直方向成,大小为的拉力向下拉动内侧的刷子时,外侧刷子将立即跟着移动且很快与内侧刷子保持相对静止.此时刷子磁铁间的吸引力在垂直玻璃板面方向的分量恒为,求刷子间的磁铁吸引力在沿玻璃板面切线方向的分量.
(3)假设玻璃是边长为的正方形,刷子是边长为的正方形;当两刷子的正对面积大于一半时,刷子磁铁间的吸引力的垂直分量和切向分量均不变,当两刷子的正对面积小于或等于一半时,两刷子就无法吸引在一起.在(2)的情况下,若拉力方向不变,大小变为,要使一次性向下拉动刷子就可以完成清理玻璃的竖边,求的取值范围.
如图所示,在竖直面内有一光滑水平直轨道与半径为R=0.25m的光滑半圆形轨道在半圆的一个端点B相切,半圆轨道的另一端点为C。在直轨道上距B为x(m)的A点,有一可看做质点、质量为m=0.1kg的小物块处于静止状态。现用水平恒力将小物块推到B处后撤去恒力,小物块沿半圆轨道运动到C处后,恰好落回到水平面上的A点,取g=10m/s2。求
(1)水平恒力对小物块做功W与x的关系式;
(2)水平恒力做功的最小值;
(3)水平恒力的最小值。
如图所示,一个质量m=1kg的长木板静止在光滑的水平面上,并与半径为R=1.8m的光滑圆弧形固定轨道接触(但不粘连),木板的右端到竖直墙的距离为s=0.08m;另一质量也为m的小滑块从轨道的最高点由静止开始下滑,从圆弧的最低点A滑上木板。设长木板每次与竖直墙的碰撞时间极短且无机械能损失。木板的长度可保证物块在运动的过程中不与墙接触。已知滑块与长木板间的动摩擦因数=0.1,g取10m/s2。试求:
(1)滑块到达A点时对轨道的压力大小;
(2)当滑块与木板达到共同速度()时,滑块距离木板左端的长度是多少?
【附加题10分】一辆电动汽车的质量为1×103 kg,额定功率为2×104 W,在水平路面上由静止开始做直线运动,最大速度为v2,运动中汽车所受阻力恒定.发动机的最大牵引力为2×103 N,其行驶过程中牵引力F与车速的倒数1/v的关系如图所示.试求:
(1)整个运动中的最大加速度;
(2)电动车匀加速运动的最长时间
(3)电动车发生100m的位移(此时已达到最大速度)的过程中所用的时间.
某缓冲装置的理想模型如图所示,劲度系数足够大的轻质弹簧与轻杆相连,轻杆可 在固定的槽内移动,与槽间的滑动摩擦力为定值.轻杆向右移动不超过L时,装置可安全工作.若一小车分别以初动能Ek1和Ek2撞击弹簧,导致轻杆分别向右移动L/4和L.已知装置安全工作时,轻杆与槽间的最大静摩擦力等于滑动摩擦力,且不计小车与地面间的摩擦.比较小车这两次撞击缓冲过程,下列说法正确的是
A.小车撞击弹簧的初动能之比为1:4 | B.系统损失的机械能之比为1:4 |
C.两次小车反弹离开弹簧的速度相同 | D.两次小车反弹离开弹簧的速度不同 |
(多选)如图所示,水平桌面上的轻质弹簧一端固定,另一端与小物块相连.弹簧处于自然长度时物块位于O点(图中未标出).物块的质量为m,AB=a,物块与桌面间的动摩擦因数为μ.现用水平向右的力将物块从O点拉至A点,拉力做的功为W.撤去拉力后物块由静止向左运动,经O点到达B点时速度为零.重力加速度为g.则上述过程中( )
A.物块在A点时,弹簧的弹性势能等于W-μmga |
B.物块在B点时,弹簧的弹性势能小于W-μmga |
C.经O点时,物块的动能小于W-μmga |
D.物块动能最大时弹簧的弹性势能小于物块在B点时弹簧的弹性势能 |
如图所示,图中的装置可测量子弹的速度,其中薄壁圆筒半径为R,圆筒上的a、b两点是一条直径上的两个端点(图中OO′为圆筒轴线)。圆筒以速度v竖直向下匀速运动。若某时刻子弹沿图示平面正好水平射入a点,且恰能经b点穿出。
(1)若圆筒匀速下落时不转动,求子弹射入a点时速度的大小;
(2)若圆筒匀速下落的同时绕OO匀速转动,求圆筒转动的角速度条件。
一辆汽车质量为1×103 kg,最大功率为2×104 W,在水平路面上由静止开始做直线运动,最大速度为v2,运动中汽车所受阻力恒定.发动机的最大牵引力为3×103 N,其行驶过程中牵引力F与车速的倒数的关系如图所示.试求:
(1)根据图线ABC判断汽车做什么运动?
(2)v2的大小;
(3)整个运动过程中的最大加速度;
(4)匀加速运动过程的最大速度是多大?当汽车的速度为10 m/s时发动机的功率为多大?
如图所示,匀强磁场B1垂直水平光滑金属导轨平面向下,垂直导轨放置的导体棒ab在平行于导轨的外力F作用下做匀加速直线运动,通过两线圈感应出电压,使电压表示数U保持不变。已知变阻器最大阻值为R,且是定值电阻R2 的三倍,平行金属板MN相距为d。在电场作用下,一个带正电粒子从O1由静止开始经O2小孔垂直AC边射入第二个匀强磁场区,该磁场的磁感应强度为B2,方向垂直纸面向外,其下边界AD距O1O2连线的距离为h。已知场强B2 =B,设带电粒子的电荷量为q、质量为m,则高度,请注意两线圈绕法,不计粒子重力。求:
(1)试判断拉力F能否为恒力以及F的方向(直接判断);
(2)调节变阻器R的滑动头位于最右端时,MN两板间电场强度多大?
(3)保持电压表示数U不变,调节R的滑动头,带电粒子进入磁场B2后都能击中AD边界,求粒子打在AD边界上的落点距A点的距离范围。
如图所示,圆心为原点、半径为R的圆将xOy平面分为两个区域,即圆内区域Ⅰ和圆外区域Ⅱ。区域Ⅰ内有方向垂直于xOy平面的匀强磁场B1。平行于x轴的荧光屏垂直于xOy平面,放置在坐标y=-2.2R的位置。一束质量为m、电荷量为q、动能为E0的带正电粒子从坐标为(-R,0)的A点沿x正方向射入区域Ⅰ,当区域Ⅱ内无磁场时,粒子全部打在荧光屏上坐标为(0,-2.2R)的M点,且此时,若将荧光屏沿y轴负方向平移,粒子打在荧光屏上的位置不变。若在区域Ⅱ内加上方向垂直于xOy平面的匀强磁场B2,上述粒子仍从A点沿x轴正方向射入区域Ⅰ,则粒子全部打在荧光屏上坐标为(0.4R,-2.2R)的 N点。求:
(1)打在M点和N点的粒子运动速度v1、v2的大小。
(2)在区域Ⅰ和Ⅱ中磁感应强度B1、B2的大小和方向。
(3)若将区域Ⅱ中的磁场撤去,换成平行于x轴的匀强电场,仍从A点沿x轴正方向射入区域Ⅰ的粒子恰好也打在荧光屏上的N点,则电场的场强为多大?
如图(a)为一研究电磁感应的实验装置示意图,其中电流传感器(电阻不计)能将各时刻的电流数据实时通过数据采集器传输给计算机,经计算机处理后在屏幕上同步显示出I-t图像。平行且足够长的光滑金属轨道的电阻忽略不计,导轨平面与水平方向夹角θ=30°。轨道上端连接一阻值R=1.0Ω的定值电阻,金属杆MN的电阻r=0.5Ω,质量m=0.2kg,杆长L=1m跨接在两导轨上。在轨道区域加一垂直轨道平面向下的匀强磁场,闭合开关s,让金属杆MN从图示位置由静止开始释放,其始终与轨道垂直且接触良好。此后计算机屏幕上显示出如图(b)所示的,I-t图像(g取10m/s2),求:
(1)匀强磁场的磁感应强度B的大小和在t=0.5s时电阻R的热功率;
(2)估算0~1.2s内通过电阻R的电荷量及在R上产生的焦耳热;
(3)若在2.0s时刻断开开关S,请定性分析金属杆MN 0~4.0s末的运动情况;并在图(c)中定性画出金属杆MN 0~4.0s末的速度随时间的变化图像。